PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Open set lattices of subspaces of spectrum spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the AAA88 - 88th Workshop on General Algebra Editors for the Special Issue: Anna Romanowska, Jonathan D. H. Smith
Języki publikacji
EN
Abstrakty
EN
We take a unified approach to study the open set lattices of various subspaces of the spectrum of a multiplicative lattice L. The main aim is to establish the order isomorphism between the open set lattice of the respective subspace and a sub-poset of L. The motivating result is the well known fact that the topology of the spectrum of a commutative ring R with identity is isomorphic to the lattice of all radical ideals of R. The main results are as follows: (i) for a given nonempty set S of prime elements of a multiplicative lattice L, we define the S-semiprime elements and prove that the open set lattice of the subspace S of Spec(L) is isomorphic to the lattice of all S-semiprime elements of L; (ii) if L is a continuous lattice, then the open set lattice of the prime spectrum of L is isomorphic to the lattice of all m-semiprime elements of L; (iii) we define the pure elements, a generalization of the notion of pure ideals in a multiplicative lattice and prove that for certain types of multiplicative lattices, the sub-poset of pure elements of L is isomorphic to the open set lattice of the subspace M ax(L) consisting of all maximal elements of L.
Wydawca
Rocznik
Strony
637--652
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
autor
  • Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
Bibliografia
  • [1] D. D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis 6 (1976), 131–145.
  • [2] B. Banaschewski, Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37 (1996), 349–370.
  • [3] B. Banaschewski, Functorial maximal spectra, J. Pure Appl. Algebra 168 (2002), 327–346.
  • [4] G. Gierz et al., Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications, Vol. 93, Cambridge University Press, 2003.
  • [5] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002.
  • [6] P. Johnstone, Stone Spaces, Cambridge University Press, 1982.
  • [7] G. De Marco, Projectivity of pure ideals, Rend. Sem. Mat. Univ. Padova 69 (1983), 289–304.
  • [8] R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481–498.
  • [9] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, 2003.
  • [10] K. Keimel, A unified theory of minimal prime ideals, Acta Math. Acad. Sci. Hungar. Tomus 23 (1972), 51–69.
  • [11] J. Martinez, Archimedean frames, revisted, Comment. Math. Univ. Carolin. 49(1) (2008), 25–44.
  • [12] J. Martinez, An innocent theorem of Banaschewski, applied to an unsuspecting theorem of De Marco, and the aftermath thereof, Forum Math. 25 (2013), 565–596.
  • [13] J. Rosicky, Multiplicative lattices and frames, Acta Math. Hungar. 49 (1987), 391–395.
  • [14] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 2000.
  • [15] N. K. Thakare, S. K. Nimbhorkar, Space of minimal prime ideals of a ring without nilpotent elements, J. Pure Appl. Algebra 27 (1983), 75–85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a576dd5d-76bd-4395-b8d9-c6dddf366043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.