Reduction of railway bridge vibration
with groundhook mass damper
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The aim of this research is to compare effectiveness of an ordinary mass damper with a more complex one equipped with an extra
spring element connecting the damper mass with the ground. For both simple- and nonlinear- primary structure models and

for stable load state, theoretically efficiency of both types of dampers is just the same therefore their efficiencies in bridge structures

subjected to non-stationary load are investigated.
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Introduction

As nowadays conventional high-speed trains and railways
are constructed worldwide, problems bound to specific
behavior of this means of transport are getting more
essential. From economical point of view it is desired to
design lightweight bridge structures, but from engineer-
ing point of view it is necessary to be sure, that each
bridge can satisfy both — the Ultimate Limit States
conditions and the Serviceability Limit States conditions.
For train bridges dynamical excitation may affect both
states severely, so in order to suppress these effects, tuned
mass dampers can be applied. In this paper efficiency of
a groundhook damper is investigated. For this reason
two models are researched to determine optimal damping
parameters.

Mechanical model of damper for simple
primary structure

The mass damper considered in this paragraph is
a generalized version of the den Hartog’s damper —
it contains two springs (with stiffness — respectively £,
and k) instead of just one. The first spring connects the
damper mass body with the primary structure M and the
second one connects the damper mass body with ground
(point with blocked movements in all directions) as
shown in Fig. 1. Just as proposed by den Hartog, the

primary structure is assumed to be subjected to a periodic
load.

Classical way of searching optimal parameters of
mass damper was applied, as presented in [3]. Differential
equations describing behavior of such a mechanical
system:

{M X+ (K, + K)X, =k, - X, = Pysinat, M

m-%, +(k, +k,)-x, =k, -x, =0.

It is known that solution can be found for x, and x,:
X, = a, Sin at,
{ 1 1 ) (2)
X, = a, sin wt.
Finally relative amplitudes of vibration subjects following
relation:

k; > sin{ W)

m

Fig. 1.
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From (3) one may deduce that for this simple model the
primary structure is stationary if:

k +k, =m-o’ and k >0 (4)

Mechanical model of damper for nonlinear
primary structure

The difference between nonlinear and simple models lies
in definition of the primary structure — unlike the
damper presented in previous paragraph, this one is
assumed to suppress vibration of a mass supported by
two nonlinear spring elements as shown below.

Fig. 2.

Differential equations describing behavior of such
a mechanical system:

(00 ey o b ) Rt = M, (o)

|K~(a—xl)—K~ - 5
—ky X + K (% —X,) = mK,.
First two elements of the first equation can be expanded
to Maclaurin series:

K-@-x)1- | =22 |s 05.K-%+0375-K-Lx? (6)
! a’+(@-x) ' ' a !

For x, = 0.01a error of the nonlinear term is estimated at
level of 1%. As for optimal tuning of the damper the
value of x, is zero it was assumed that taking into account
only the linear term is satisfying.

for K -(a—xl){l— 2'6122]:—0.5~K-x1 @)
Va®+(a-x)

_?,X1+k1~)(2—k1~X1+POS|nCUtZM'Xi, (8)
—kz-x2+k1-x1+k1-x2:m-5<'2.
Finally:
ﬁ: k1+k2—a)2~m (9)
R

(z+k1—a)2~Mj~(kl+k2—a)2-m)—klz

Optimal tuning condition is just the same as in previous
paragraph (4).

It is assumed that for a more complex system (a beam
with non-stationary load) the same relations should give
satisfying suppression of vibrations, with elimination of
the resonant growth of amplitude of deflections.

The goal of this research is finding optimal relation

of k, to k,.

Mechanical models of the bridge
and of carriages

The Euler-Bernoulli simple beam governing equation
with constant values of m(x), C(x), El(x):

62 X, t Xt 84 Xt
3;2 ) yay(at ) 2(4 )R (10)
where: m — the beam mass per unit length,
y(x,2) — the beam deflection,
G — the beam damping,
El — the beam bending stiffness,

P,(x,t) — load.

yor=3(5)
kit
Vi
ny
ki
Fig. 3.

Schematic model of the bridge-damper system is shown
in Fig. 3.

Equation (11) presents total load acting on the Euler
beam, consisting of train load and damper reaction.

R0 =Y By -0bc-v- (-4 )] Hiltt)- N
- 11
_5|:X_|2_:|'[(ysr -Y)- ktl]

Ho(t,tk):U(t—tk)—U{t—(tk +\';H

(12)
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0 for x=0 “
S(x) = d |s(x)dx=1 (13
) {0 forx=0 o J; (x)ax (13)
1 fort>0
u()= 14
® {O fort<0 (14
where: NV, — number of carriages,
t, — the k — carriage time of approach of the
beginning of the bridge,
L — the bridge length,
v — speed of moving load.

The train was modeled as a series of V, carriages moving
along the beam with a constant speed ». One carriage
consists of a rigid body with two degtees of freedom,
supported in two points on suspensions, each consisting
of coupled spring and damper as shown in Fig. 4.

Z; M Zy
y!" . | Cv,kl' Cv,kv | 2 . yZ
— d —
Fig. 4.

P =05-M-g+k (v —z)+c, (¥, -2) and k=12 (15)

where: ¢ — gravitational acceleration,

M — mass of the carriage,

z, — vertical displacement of the rigid bogie
mass k£ point,

9, — current deflection of beam under the 4
point,

k, — stiffness of the carriage suspension,

¢, — damping of the carriage suspension.

Each carriage subjects to following system of differential
equations:

L+ :&‘(kv ‘(yl - 21)"' kv ‘(yz - Z2)+Cv (Y1 - Z1)'*'CV (yz - zz))
4, - zlszz'(_ kv ‘(Y1 - 21)+ kv '(yz - ZZ)_CV (yl - 21)+Cv (YZ - 22)) (16)
[ _M-d?
V)
where:d — length of a carriage.

Numerical model
VD=3 00 n0=0"0- 1O (17)

where: ®(x) —vector of shape functions of first natural

modes of the beam,
N —number of natural modes taken into
account.

For a simple beam vector of V first natural modes
consists of following terms:

o) =1sinZY sin 2%V sinNEVL o (gg)
L L L

Putting (17) into (10), multiplying both sides by ®(x),
integrating with respect to x variable and coupling with
the damper governing equation gives:

U@(x) -m-®" (x)deH(t) + UCD(X) -C,- @' (x)dx]H(t) +
( ! ®(x)-El- @' (x)" deH(t) = (19)

=5 ablt-t ) Holta)-0{ 5 |- (0 <)k
m, - Yx(t)"'(ku"'kzz)' Ve =Ka* Yor

In a simplified form:
[M,]-H(®) +[C,]- H(®) +[K, ] Ht) =
~R0-0{ 5 (v k) 20)
m, - ¥, (t) +(kt1 + ku) Yo =Ky Ve

Finally as matrces |
o ml Lo er ol

nmhMA-@@)m{mq{mﬂ @

- (D[%) ktl ktl + ktZ Y (t) 0

+
Where [0] is zero vector.

This differential equation was solved using the Finite
Differences Method.

Resonant load

According to [2] a beam bridge responds with resonance
to a series of moving loads if one of following two
conditions is satisfied:

v= i 22)
2-7-n
@;-L
v=— (23)
z-Nn
where: @, — bridge natural frequency,

d — load spacing.

The (23) condition is much less possible to occur,
because it refers to very high speeds — practically
not achieved. Therefore it is assumed that the
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damper should be tuned for load caused by train
moving with the first resonant speed according to
relation (22).

Analysis results and conclusions

Values of train mass and dimensions were set to imitate
a TGV train. This paper deals with a bridge-train system
with following parameters:

N,, =10

d=18m

El =22e10m*N/m?
L =40m
m=60000kg/m

M = 60000kg

w =7, EIL4 =11.812 rad/sec
m.

Thus the resonant load occurs for speed:

number of carriages

v=33.84m/s (24)
Then the load frequency o:
=27V _11812rad/s (25)

The simulation was carried out in three ceses differing in
the damper mass 7,. The mass m, was set as 0.5%, 1%
and 1.5% of the total mass of the bridge. Finally, in
order to eliminate the resonance effect, the damper had

to be tuned according to (4) as follows:

Case 1:

m,= 12000kg
k+k, = 0**m, = 1.67¢6 N/m

Case 2:

m,= 24000kg
ki+k, = 0’ m, = 3.349¢6 N/m

Case 3:

m,= 36000kg
ky+k, = @*m, = 5.023e¢6 N/m

Excitation of the structure was investigated in two
points. In the first approach, in order to analyze
influence of the k,/k, ratio on the dynamic behavior of
the beam bridge, deflection in mid-span was calculated
for models with and without mass damper, in three
above-mentioned damper cases. In this approach
deflection was estimated only for the first natural mode
of the modal composition, as it quite accurately refers
to the one degree of freedom model of the primary
structure. For optimal k,/k, ratios from the first
approach, the second approach was applied — deflection
under each moving axis was calculated and compared
with results for model without damper. For each
calculation deflection of these dynamical systems were
compared with equivalent static deflection.

Results prove that the higher efficiency rate is achieved

Table 1. Maximal deflection in the bridge midspan in three cases.

o,/ (k,+k,)

without damper

0 8,356 7,387 13,42
0,1 8,661 7,659 7,131 13,42
0,2 9,072 7,936 7,398 13,42
0,25 9,286 8,133 7,565 13,42
(V) 9,536 8,349 7,736 13,42
0,4 10,121 8,831 8,16 13,42
0,5 10,875 9,471 8,719 13,42
0,6 11,705 10,349 9,521 13,42
0,7 12,407 11,493 10,657 13,42
0,8 12,944 12,492 12,056 13,42

Table 2. Maximal deflection under moving loads in three cases for k,/k; = 0.

Deflection under moving loads [mm]

Axis serial number

5 6 7
1 3687 | 5011 | 6499 | 7,173 | 7,639 | 7.844 | 7773 | 7453 | 6957 | 6432 | 4,414
I 3643 | 4,959 631 | 6795 | 7001 | 6885 | 6571 | 6293 | 6366 | 6389 | 4717
SN 3602 | 4911 | 6,144 | 6523 | 6585 | 6435 | 6318 | 6317 636 | 5857 | 3,551
g;:l‘;:r‘ 3731 | 5,106 | 6715 | 7,685 | 8619 | 9499 | 10,323 | 11,087 | 11,796 | 12,439 | 11,11




Reduction of railway bridge vibration with groundhook mass damper

o

o N W W R
(=]

N

0% T 1

. Ko/ (kytky) O .
== m=12000kg

Reduction rate of midspan deflection

== m=24000kg
= m=36000kg

Fig. 5. Reduction of vibration in the bridge midspan in three
cases.
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Fig. 6. Reduction of vibration under moving loads in three
cases.

for zero stiffness value of the additional spring element,
and it can be observed that the higher the participation
of the extra spring stiffness in the total stiffness of the
damper, the higher drop of effectiveness. Applying the
extra spring element makes the system slower reacting to
non-stationary load, which results in bigger increase of
deflections in initial phase of the train-bridge interaction.
The damper mass also affects effectiveness of a damper,
which is higher for heavier damper mass, but growth of
effectiveness drops with rise of the mass. A significant
suppression was observed for deflection in the midspan
— the maximal deflection was reduced from 13.4 mm
to 8.4 mm in the first case, 7.4 mm in the second case
and 6.9 mm in the third case. Deflections were reduced
by 37,7%, 45,0% and 48,3% respectively.

Calculations show considerable reduction of maximal
deflection under moving axes, but bigger suppression
was noted for axes above 5th, as the damper began
accumulating energy and when values of deflection were
bigger. Simulation results for optimal system with zero
value of the k,/k, ratio are presented below.
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