PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nearshore sandbar switching episodes and their relationship with coastal erosion at the Curonian Spit, Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The longshore realignment of nearshore sandbars is a morphodynamic phenomenon of multiple sandbar systems that has been known about for several decades. However, it is unknown how switching-related nearshore changes influence the evolution of subaerial beaches. This study aims to define the relationship between sandbar switching episodes and the dynamic state of the beach-foredune system along the Curonian Spit coast (Baltic Sea) using decadal satellite-derived and beach profiling data. To define this connection, sandbar switching locations, sandbar cross-shore positions, shoreline positions, and sand volume changes in the beach-foredune system were assessed on interannual and storm-related time scales. Twenty-seven sandbar switching episodes were observed with an average duration of 14.3 months. Most of the switching episodes occurred at preferred locations, coinciding with breaking points of different shoreline orientations where oblique waves and longshore currents prevailed. Shoreline retreat at an average rate of —14.2 m was observed within most of the sandbar switching zones. During major storm events, the average rate of erosion within the sandbar switching zones was significantly higher than the rate outside them. On an interannual time scale, a moderate average rate of erosion was observed within the sandbar switching zones compared to a small accretion rate outside them. Additional case studies of coastal evolution within the switching zones indicated well-correlated rates of switching-determined outer sandbar positions, shoreline positions, and sand volume on the beach and foredune during the switching episodes. The results of this study could be important for the identification of erosional hot spots and coastal prediction. ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Czasopismo
Rocznik
Strony
71--85
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Geoenvironmental Research, Nature Research Centre, Vilnius, Lithuania
  • Laboratory of Geoenvironmental Research, Nature Research Centre, Vilnius, Lithuania
  • Laboratory of Geoenvironmental Research, Nature Research Centre, Vilnius, Lithuania
  • Laboratory of Geoenvironmental Research, Nature Research Centre, Vilnius, Lithuania
  • Institute of Geosciences, Vilnius University, Vilnius, Lithuania
Bibliografia
  • 1. Aagaard, T., Davidson-Arnott, R., Greenwood, B., Nielsen, J., 2004. Sediment supply from shoreface to dunes: Linking sediment transport measurements and long-term morphological evolution. Geomorphology 60, 205-224. https://doi.org/10.1016/j.geomorph.2003.08.002
  • 2. Aleman, N., Certain, R., Robin, N., Barusseau, J.P., 2017. Morphodynamics of slightly oblique nearshore bars and their relationship with the cycle of net offshore migration. Mar. Geol. 392, 41-52. https://doi.org/10.1016/j.margeo.2017.08.014
  • 3. Balouin, Y., Tesson, J., Gervais, M., 2013. Cuspate shoreline relationship with nearshore bar dynamics during storm events—field observations at Sete beach, France. J. Coast. Res. 65, 440-445. https://doi.org/10.2112/SI65-075.1
  • 4. Bouvier, C., Balouin, Y., Castelle, B., 2017. Video monitoring of sandbar-shoreline response to an offshore submerged structure at a microtidal beach. Geomorphology 295, 297-305. https://doi.org/10.1016/j.geomorph.2017.07.017
  • 5. Brooks, S.M., Spencer, T., Christie, E.K., 2017. Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea. Geomorphology 283, 48-60. https://doi.org/10.1016/j.geomorph.2017.01.007
  • 6. Castelle, B., Marieu, V., Bujan, S., Bujan Alongshore-Variable Beach, S., Changes, D., 2019. Alongshore-Variable Beach and Dune Changes on the Timescales from Days (Storms) to Decades Along the Rip-dominated Beaches of the Gironde Coast, SW France. J. Coast. Res. SI 88, 157-171. https://doi.org/10.2112/SI88-012.1
  • 7. Castelle, B., Marieu, V., Bujan, S., Splinter, K.D., Robinet, A., Sénéchal, N., Ferreira, S., 2015. Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 238, 135-148. https://doi.org/10.1016/j.geomorph.2015.03.006
  • 8. Castelle, B., Turner, I.L., Ruessink, B.G., Tomlinson, R.B., 2007. Impact of storms on beach erosion: Broadbeach (Gold Coast, Australia). J. Coast. Res. 50, 534-539.
  • 9. Cohn, N., Ruggiero, P., De Vries, S., García-Medina, G., 2017. Beach growth driven by intertidal sandbar welding. In: Coastal Dynamics, Helsingør, 2017, 12-16.
  • 10. Del Río, L., Gracia, F.J., Benavente, J., 2013. Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 196, 252-266. https://doi.org/10.1016/j.geomorph.2012.07.027
  • 11. Dubarbier, B., Castelle, B., Marieu, V., Ruessink, G., 2015. Process-based modeling of cross-shore sandbar behavior. Coast. Eng. 95, 35-50. https://doi.org/10.1016/j.coastaleng.2014.09.004
  • 12. Fernández-Mora, A., Calvete, D., Falqués, A., De Swart, H.E., 2015. Onshore sandbar migration in the surf zone: New insights into the wave-induced sediment transport mechanisms. Geophys. Res. Lett. 42, 2869-2877. https://doi.org/10.1002/2014GL063004
  • 13. Gijsman, R., Ruessink, B.G., Visscher, J., Schlurmann, T., 2021. Observations on decadal sandbar behaviour along a large-scale curved shoreline. Earth Surf. Process. Landforms 46, 490-503. https://doi.org/10.1002/esp.5041
  • 14. Harley, M.D., Turner, I.L., Short, A.D., Ranasinghe, R., 2009. An empirical model of beach response to storms-SE Australia. In: 19th Australasian Coastal and Ocean Engineering Conference 2009 and the 12th Australasian Port and Harbour Conference 2009, Coasts and Ports, 2009, 589-595.
  • 15. Jakimavičius, D., Kriaučiūnienė, J., Šarauskienė, D., 2018. Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water). Oceanologia 60 (2), 207-218. https://doi.org/10.1016/j.oceano.2017.10.004
  • 16. Janušaitė, R., Jukna, L., Jarmalavičius, D., Pupienis, D., Žilinskas, G., 2021. A Novel GIS-Based Approach for Automated Detection of Nearshore Sandbar Morphological Characteristics in Optical Satellite Imagery. Remote Sens. 13, 2233. https://doi.org/10.3390/rs13112233
  • 17. Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2017. Geologic frame-work as a factor controlling coastal morphometry and dynamics. Curonian Spit, Lithuania. Int. J. Sediment Res. 32, 597-603. https://doi.org/10.1016/j.ijsrc.2017.07.006
  • 18. Kelpšaitė, L., Dailidienė, I., 2011. Influence of wind wave climate change on coastal processes in the eastern Baltic Sea. J. Coast. Res. 64, 220-224.
  • 19. Kuznetsova, O., Saprykina, Y., 2019. Influence of Underwater Bar Location on Cross-Shore Sediment Transport in the Coastal Zone. J. Mar. Sci. Eng. 7, 55. https://doi.org/10.3390/jmse7030055
  • 20. McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425-1432. https://doi.org/10.1080/01431169608948714
  • 21. McNinch, J.E., 2004. Geologic control in the nearshore: Shore-oblique sandbars and shoreline erosional hotspots, Mid-Atlantic Bight, USA. Mar. Geol. https://doi.org/10.1016/j.margeo.2004.07.006
  • 22. Ojeda, E., Ruessink, B.G., Guillen, J., 2008. Morphodynamic response of a two-barred beach to a shoreface nourishment. Coast. Eng. 55, 1185-1196. https://doi.org/10.1016/j.coastaleng.2008.05.006
  • 23. Parlagreco, L., Melito, L., Devoti, S., Perugini, E., Soldini, L., Zitti, G., Brocchini, M., 2019. Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches. Sensors 19, 1854. https://doi.org/10.3390/s19081854
  • 24. Phillips, M.S., Harley, M.D., Turner, I.L., Splinter, K.D., Cox, R.J., 2017. Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 385, 146-159. https://doi.org/10.1016/j.margeo.2017.01.005
  • 25. Planet, 2021. Planet Imagery Products Specifications [WWW Document]. https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed 5.9.21).
  • 26. Planet Team, 2017. Planet Application Program Interface: In Space for Life on Earth [WWW Document]. https://api.planet.com/(accessed 5.9.21).
  • 27. Plant, N.G., Freilich, M.H., Holman, R.A., 2001. Role of morphologic feedback in surf zone sandbar response. J. Geophys. Res. Ocean. 106, 973-989. https://doi.org/10.1029/2000JC900144
  • 28. Price, T.D., Ruessink, B.G., Castelle, B., 2014. Morphological coupling in multiple sandbar systems — A review. Earth Surf. Dyn. https://doi.org/10.5194/esurf- 2-309-2014
  • 29. Pruszak, Z., Ró ̇zy ́nski, G., Szmytkiewicz, P., 2008. Megascale rhythmic shoreline forms on a beach with multiple bars. Oceanologia 50 (2), 183-203.
  • 30. Quartel, S., Kroon, A., Ruessink, B.G., 2008. Seasonal accretion and erosion patterns of a microtidal sandy beach. Mar. Geol. 250, 19-33. https://doi.org/10.1016/j.margeo.2007.11.003
  • 31. Ruessink, B.G., Coco, G., Ranasinghe, R., Turner, I.L., 2007. Coupled and noncoupled behavior of three-dimensional morphological patterns in a double sandbar system. J. Geophys. Res. Ocean. 112. https://doi.org/10.1029/2006JC003799
  • 32. Shand, R.D., 2003. Relationships between episodes of bar switching, cross-shore bar migration and outer bar degeneration at Wanganui, New Zealand. J. Coast. Res. 19, 157-170.
  • 33. Shand, R.D., Bailey, D.G., 1999. A review of net offshore bar migration with photographic illustrations from Wanganui, New Zealand. J. Coast. Res. 15, 365-378.
  • 34. Shand, R.D., Bailey, D.G., Shepherd, M.J., 2001. Longshore realignment of shore-parallel sand-bars at Wanganui, New Zealand. Mar. Geol. 179, 147-161. https://doi.org/10.1016/S0025-3227(01)00223-7
  • 35. Shand, R.D., Hesp, P.A., Shepherd, M.J., 2006. Beach Cut In Relation To Net Offshore Bar Migration Characteristics of Beach Cut. J. Coast. Res. 2004, 334-340.
  • 36. Splinter, K.D., Gonzalez, M.V.G., Oltman-Shay, J., Rutten, J., Holman, R., 2018. Observations and modelling of shoreline and multiple sandbar behaviour on a high-energy meso-tidal beach. Cont. Shelf Res. 159, 33-45. https://doi.org/10.1016/j.csr.2018.03.010
  • 37. Stive, M.J.F., Aarninkhof, S.G.J., Hamm, L., Hanson, H., Larson, M., Wijnberg, K.M., Nicholls, R.J., Capobianco, M., 2002. Variability of shore and shoreline evolution. Coast. Eng. 47, 211-235. https://doi.org/10.1016/S0378-3839(02)00126-6
  • 38. Stive, M.J.F., Guillen, J., Capobianco, M., 1997. Bar migration and duneface oscillation on decadal scales. In: Proceedings of the 25th Coastal Engineering Conference 1996, 2884-2896. https://doi.org/10.1061/9780784402429.223
  • 39. Tătui, F., Vespremeanu-Stroe, A., Preoteasa, L., 2013. The correlated behavior of sandbars and foredunes on a nontidal coast (Danube Delta, Romania). J. Coast. Res. 5 (Sp. 2). https://doi.org/10.2112/si65-317.1
  • 40. Thornton, E.B., MacMahan, J., Sallenger, A.H., 2007. Rip currents, mega-cusps, and eroding dunes. Mar. Geol. 240, 151-167. https://doi.org/10.1016/j.margeo.2007.02.018
  • 41. Umeda, S., Yuhi, M., Karunarathna, H., 2018. Seasonal to Decadal Variability of Shoreline Position on a Multiple Sandbar Beach. J. Coast. Res. 85, 261-265. https://doi.org/10.2112/si85-053.1
  • 42. USGS, 1998. USGS EROS Archive - Landsat Archives - Landsat 4-5 Thematic Mapper (TM) Level-1 Data Products. https://doi.org/10.5066/P9IAXOVV
  • 43. Van de Lageweg, W.I., Bryan, K.R., Coco, G., Ruessink, B.G., 2013. Observations of shoreline-sandbar coupling on an embayed beach. Mar. Geol. 344, 101-114. https://doi.org/10.1016/j.margeo.2013.07.018
  • 44. Vermaas, T., Elias, E., Van Der Spek, A., Hoogland, R., 2017. Time-dependent effects of nourishments on shoreface bar behaviour. In: Coastal Dynamics, Helsingør, 2017, 862-869.
  • 45. Walstra, D.-J., Wesselman, D., van der Deijl, E., Ruessink, G., 2016. On the Intersite Variability in Inter-Annual Nearshore Sandbar Cycles. J. Mar. Sci. Eng. 4, 15. https://doi.org/10.3390/jmse4010015
  • 46. Wijnberg, K.M., Aarninkhof, S.G.J., Spanhoff, R., 2007. Response of a shoreline sand wave to beach nourishment. In: Proceedings of the 30th Coastal Engineering Conference 2006. World Scientific Publishing Company, 4205-4217. https://doi.org/10.1142/9789812709554_0353
  • 47. Wijnberg, K.M., Wolf, F.C.J., 1994. Three-dimensional behaviour of a multiple bar system. In: Proceedings of Coastal Dynamics’94. ASCE, 59-73.
  • 48. Yuhi, M., Matsuyama, M., Hayakawa, K., 2016. Sandbar Migration and Shoreline Change on the Chirihama Coast, Japan. J. Mar. Sci. Eng. 4, 40. https://doi.org/10.3390/jmse4020040
  • 49. Yuhi, M., Umeda, S., 2018. Characteristics of Systematic Migrations of Multiple Sandbars and Related Cross-Shore Sediment Transport at Chirihama and Adjacent Coasts, Japan. J. Coast. Res. 85, 231-235. https://doi.org/10.2112/si85-047.1
  • 50. Žilinskas, G., Janušaitė, R., Jarmalavičius, D., Pupienis, D., 2020. The impact of Klaip ̇eda Port entrance channel dredging on the dynamics of coastal zone, Lithuania. Oceanologia 62 (4PA), 489-500. https://doi.org/10.1016/j.oceano.2020.08.002
  • 51. Žilinskas, G., Jarmalavičius, D., Pupienis, D., 2018. The influence of natural and anthropogenic factors on grain size distribution along the southeastern Baltic spits. Geol. Q. 62, 375-384. https://doi.org/10.7306/gq.1413
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5735abc-5c8c-46c0-a2fe-554665590d0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.