PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Average capacity analysis of FSO system with Airy beam as carrier over exponentiated Weibull channels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on scintillation index of Airy beam and exponentiated Weibull channel model, analytical expressions of average channel capacity for free-space optical (FSO) communication links with Airy beam as signal carrier under weak atmospheric turbulence and on-off keying modulation scheme are derived. The average capacity at various propagation distances, transverse scale factors and exponential decay factors has been evaluated. And we compared the average capacity of FSO links with Airy beam and Gaussian beam as signal carrier. The results show that the average capacity of FSO links with Airy beam as carrier increases with the increase of mean signal-to-noise ratio and decreases uniformly with the increase of propagation distance. When the transverse scale factor of Airy beam is about 2 cm, a higher average capacity can be obtained. And the smaller the exponential decay factor of Airy beam, the larger the average capacity. Under the same source power or source width, the average capacity of FSO links with Airy beam as carrier is significantly higher than that of FSO links with Gaussian beam as carrier. The results of this research have some reference significance for the application of Airy beam in FSO communication system.
Czasopismo
Rocznik
Strony
35--48
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Information and Navigation College, Air Force Engineering University, Xi’an, Shaanxi 710077, China
autor
  • Information and Navigation College, Air Force Engineering University, Xi’an, Shaanxi 710077, China
  • Information and Navigation College, Air Force Engineering University, Xi’an, Shaanxi 710077, China
autor
  • Information and Navigation College, Air Force Engineering University, Xi’an, Shaanxi 710077, China
autor
  • Information and Navigation College, Air Force Engineering University, Xi’an, Shaanxi 710077, China
Bibliografia
  • [1] CHAABAN A., MORVAN J., ALOUINI M., Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective, IEEE Transactions on Communications 64(3), 2016: 1176–1191, DOI: 10.1109/TCOMM.2016.2524569.
  • [2] KAUSHAL H., KADDOUM G., Optical communication in space: Challenges and mitigation techniques, IEEE Communications Surveys & Tutorials 19(1), 2016: 57–96, DOI: 10.1109/COMST.2016.2603518.
  • [3] BOSU R., PRINCE S., Mitigation of turbulence induced scintillation using concave mirror in reflectionassisted OOK free space optical links, Optics Communications 432, 2019: 101–111, DOI: 10.1016/j.optcom.2018.09.061.
  • [4] KAUR P., JAIN V.K., KAR S., Effect of atmospheric conditions and aperture averaging on capacity of free space optical links, Optical and Quantum Electronics 46, 2014: 1139–1148, DOI: 10.1007/s11082-013-9845-3.
  • [5] PELEG A., MOLONEY J.V., Scintillation reduction by use of multiple Gaussian laser beams with different wavelengths, IEEE Photonics Technology Letters 19(12), 2007: 883–889, DOI: 10.1109/ LPT.2007.897559.
  • [6] LI J.W., CHEN W.B., Bandwidth of adaptive optics system in satellite-ground coherent laser communication, Chinese Journal of Lasers 43(8), 2016, 0806003, DOI: 10.3788/cjl201643.0806003.
  • [7] ANDREWS L.C., Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere, Journal of the Optical Society of America A 9(4), 1992: 97–600, DOI: 10.1364/JOSAA.9.000597.
  • [8] WANG J., ZHU S.J., WANG H.Y., CAI Y.J., LI Z.H., Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence, Optics Express 24(11), 2016: 11626–11639, DOI: 10.1364/OE.24.011626.
  • [9] WANG J., WANG, H.Y., ZHU S.J., LI Z.H., Second-order moments of a twisted Gaussian Schell-model beam in anisotropic turbulence, Journal of the Optical Society of America A 35(7), 2018: 1173–1179, DOI: 10.1364/JOSAA.35.001173.
  • [10] YANG S., WANG J., GUO M.J., QIN Z.X., LI J.H., Propagation properties of Gaussian vortex beams through the gradient-index medium, Optics Communications 465, 2020, article 125559, DOI: 10.1016/j.optcom.2020.125559.
  • [11] ZHANG H.G., TANG X., LIN B.J., ZHOU Z.L., LIN C., CHAUDHARY S., GHASSEMLOOY Z., Performance analysis of FSO system with different modulation schemes over gamma-gamma turbulence channel, Proc. SPIE 11048, 17th International Conference on Optical Communications and Networks (ICOCN2018), 2019, 1104812, DOI: 10.1117/12.2519711.
  • [12] CHU X.C., ZHAO S.H., CHENG Z., LI Y.J., LI R.X., FANG Y.W., Research progress of Airy beam and feasibility analysis for its application in FSO system, Chinese Science Bulletin 61(17), 2016: 1963–1974, DOI: 10.1360/N972015-00265.
  • [13] SIVILOGLOU G.A., CHRISTODOULIDES D.N., Accelerating finite energy Airy beams, Optics Letters 32(8), 2007: 979–981, DOI: 10.1364/OL.32.000979.
  • [14] SIVILOGLOU G.A., BROKY J., DOGARIU A., CHRISTODOULIDES D.N., Observation of accelerating Airy beams, Physical Review Letters 99(21), 2007, 213901, DOI: 10.1103/PhysRevLett.99.213901.
  • [15] LIU X., XIA D.N., MONFARED Y.E., LIANG C.H., WANG F., CAI Y.J., MA P.J., Generation of novel partially coherent truncated Airy beams via Fourier phase processing, Optics Express 28(7), 2020: 9777–9785, DOI: 10.1364/OE.390477.
  • [16] GU Y.L., GBUR G., Scintillation of Airy beam arrays in atmospheric turbulence, Optics Letters 35(20), 2010: 3456–3458, DOI: 10.1364/OL.35.003456.
  • [17] CHU X.C., ZHAO S.H., FANG Y.W., Maximum nondiffracting propagation distance of aperture-truncated Airy beams, Optics Communications 414, 2018: 5–9, DOI: 10.1016/j.optcom.2018.01.001.
  • [18] CHEN C.Y., YANG H.M., KAVEHRAD M., ZHOU Z., Propagation of radial Airy array beams through atmospheric turbulence, Optics and Lasers in Engineering 52, 2014: 106–114, DOI: 10.1016/j.optlaseng.2013.07.003.
  • [19] JI X.L., EYYUBOĞLU H.T., JI G.M., JIA X.H., Propagation of an Airy beam through the atmosphere, Optics Express 21(2), 2013: 2154–2164, DOI: 10.1364/OE.21.002154.
  • [20] TAO R.M., SI L., MA Y.X., ZHOU P., LIU Z.J., Average spreading of finite energy Airy beams in non-Kolmogorov turbulence, Optics and Lasers in Engineering 51(4), 2013: 488–492, DOI: 10.1016/j.optlaseng.2012.10.014.
  • [21] EYYUBOĞLU H.T., Scintillation behavior of Airy beam, Optics & Laser Technology 47, 2013: 232–236, DOI: 10.1016/j.optlastec.2012.08.029.
  • [22] WANG J.A., WANG X.L., GUO L.Y., YING C., PENG Y., Light intensity scintillation of Airy beam, Acta Optica Sinica 37(6), 2017, 0626001, DOI: 10.3788/aos201737.0626001.
  • [23] LU Q., GAO S.J., SHENG L., WU J.B., QIAO Y.F., Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence, Applied Optics 56(13), 2017: 3750–3757, DOI: 10.1364/AO.56.003750.
  • [24] WEN W., JING Y., HU M.J., LIU X.L., CAI Y.J., ZOU C.J., LUO M., ZHOU L.W., CHU X.X., Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere, Optics Communications 415, 2018: 48–55, DOI: 10.1016/j.optcom.2018.01.033.
  • [25] ROSE P., DIEBEL F., BOGUSLAWSKI, M., DENZ C., Airy beam induced optical routing, Applied Physics Letters 102(10), 2013, 101101, DOI: 10.1063/1.4793668.
  • [26] LIANG Y., HU Y., SONG D.H., LOU C.B., ZHANG X.Z., CHEN Z.G., XU J.J., Image signal transmission with Airy beams, Optics Letters 40(23), 2015: 5686–5689, DOI: 10.1364/OL.40.005686.
  • [27] ZHU G.X., WEN Y.H., WU X., CHEN Y.J., LIU J., YU S.Y., Obstacle evasion in free-space optical communications utilizing Airy beams, Optics Letters 43(6), 2018: 1203–1206, DOI: 10.1364/OL.43.001203.
  • [28] CHU X.C., LIU R.J., LI Y., NI Y.H., WANG X., HAN Z.X., BER analysis of FSO system with Airy beam as carrier over exponentiated Weibull channel model, Optical and Quantum Electronics 53, 2021, 692, DOI: 10.1007/s11082-021-03352-6.
  • [29] ZHAO J., ZHAO S.H., ZHAO W.H., LI Y.J., LIU Y., LI X., Average capacity of airborne optical links over exponentiated Weibull atmospheric turbulence channels, Optical and Quantum Electronics 49, 2017, 104, DOI: 10.1007/s11082-017-0927-5.
  • [30] FU Y.L., MA J., YU S.Y., TAN L.Y., BER performance analysis of coherent SIMO FSO systems over correlated non-Kolmogorov turbulence fading with nonzero boresight pointing errors, Optics Communications 430, 2019: 31–38, DOI: 10.1016/j.optcom.2018.08.026.
  • [31] ZHAO J., ZHAO S.H., ZHAO W.H., LI Y.J., LIU Y., LI X., Analysis of link performance and robustness of homodyne BPSK for airborne backbone laser communication system, Optics Communications 359, 2016: 189–194, DOI: 10.1016/j.optcom.2015.09.082.
  • [32] BARRIOS R., DIOS F., Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence, Optics & Laser Technology 45, 2013: 13–20, DOI: 10.1016/j.optlastec.2012.08.004.
  • [33] KÖLBIG K.S., Reviews and Descriptions of Tables and Books, Mathematics of Computation 44(170), 1985: 573–574.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a571a6f2-8adb-4c09-bccc-9fcf88bba247
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.