PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microstructure and oxidation resistance of the aluminide coatings deposited by the CVD method on pure nickel and hafnium-doped nickel superalloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminide coating were deposited on pure nickel and hafnium-doped nickel superalloys Mar M247, Mar M200 and CMSX 4 by means of the CVD method. All coatings consisted of two layers: an outer, comprising the β-NiAl phase and the interdiffusion one. The interdiffusion layer on pure nickel consisted of the γ′-Ni3Al phase and of the NiAl phase on superalloys. MC and M23C6 carbides besides the NiAl phase were found in the interdiffusion zones on Mar M247 and Mar M200, whereas topologically close-packed phases, such as the TCP σ-phase and the R phase were found in the interdiffusion zone on CMSX 4. Coatings on substrates containing more hafnium (Mar M247 and Mar M200) were more resistant to degradation during the cyclic oxidation. The amount of 1.5–1.8 wt.% hafnium in the substrate let to the HfO2 ‘pegs’ formation in the oxide scale during oxidation of aluminized Mar M247 and Mar M200 superalloys. The improvement of lifetime of coated CMSX 4 superalloy was obtained by platinum modification. Platinum decreased diffusion of alloying elements such as Ti and Ta from the substrate to the coating and oxide scale, stabilized the NiAl phase and delayed the NiAl → Ni3Al phase transformation.
Słowa kluczowe
Rocznik
Strony
862--872
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • Department of Materials Science, Rzeszow University of Technology, W. Pola 2 Street, 35-959 Rzeszow, Poland
  • Department of Materials Science, Rzeszow University of Technology, W. Pola 2 Street, 35-959 Rzeszow, Poland
autor
  • Department of Materials Science, Rzeszow University of Technology, W. Pola 2 Street, 35-959 Rzeszow, Poland
  • Department of Materials Science, Rzeszow University of Technology, W. Pola 2 Street, 35-959 Rzeszow, Poland
Bibliografia
  • [1] N. Voudouris, Ch. Christoglou, G.N. Angelopoulos, Formation of aluminide coatings on nickel by a fluidised bed CVD process, Surface and Coatings Technology 141 (2001) 275–282.
  • [2] J.A. Haynes, Y. Zhang, K.M. Cooley, L. Walker, K.S. Reeves, B.A. Pint, High-temperature diffusion barriers for protective coatings, Surface and Coatings Technology 189 (2004) 153–157.
  • [3] M. Zagula-Yavorska, J. Sieniawski, T. Gancarczyk, Some properties of platinum and palladium modified aluminide coatings deposited by CVD method on nickel-base superalloys, Archives of Metallurgy and Materials 57 (2012) 503–509.
  • [4] M. Zagula-Yavorska, J. Sieniawski, Microstructural study on oxidation resistance of nonmodified and platinum modified aluminide coating, Journal of Materials Engineering and Performance 23 (2014) 918–926.
  • [5] J.A. Haynes, K.L. More, B.A. Pint, I.G. Wright, K. Cooley, Y. Zhang, High Temperature Corrosion and Protection of Materials, 5, 2000, . p. 35.
  • [6] Y. Niu, W. Wu, D. Boone, J. Smith, J. Zhang, C. Zhen, Oxidation behaviour of simple and platinum-modified aluminide coatings on IN738 at 1100 8C, Journal de Physique IV 3 (1993) 511–519.
  • [7] W.T. Griffiths, L.B. Pfeil, U.K. Improvement in heat-resisting alloys, Patent 459848 (1937).
  • [8] Y. Wang, M. Suneson, G. Sayre, Synthesis of hafnium modified aluminide coatings on Ni-base superalloys, Surface and Coating Technology 15 (2011) 1218–1228.
  • [9] B.A. Pint, I.G. Wright, W. Lee, Y. Zhang, B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prüßner, K.B. Alexander, Substrate and bond coat compositions: factors affecting alumina scale adhesion, Materials Science and Engineering A 245 (1998) 201–211.
  • [10] V.K. Tolpygo, K.S. Murphy, D.R. Clarke, Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings, Acta Materialia 56 (2008) 489–499.
  • [11] R. Tricot, Memoires et Etudes Scientifiques de la Revue de Metallurgie 88 (1991) 747.
  • [12] A.W. Cocchardt, W. Township, US Patent 3,005,705 (1961).
  • [13] B.M. Warnes, D.C. Punola, Clean diffusion coatings by chemical vapor deposition, Surface and Coatings Technology 94–95 (1997) 1–6.
  • [14] B.M. Warnes, Reactive element modified chemical vapor deposition low activity platinum aluminide coatings, Surface and Coatings Technology 146–147 (2001) 7–12.
  • [15] G.Y. Kim, L.M. He, J.D. Meyer, A. Quintero, J.A. Haynes, W.Y. Lee, Mechanisms of Hf dopant incorporation during the early stage of chemical vapor deposition aluminide coating growth under continuous doping conditions, Metallurgical and Materials Transactions A 35 (2004) 3581–3593.
  • [16] J.A. Nesbitt, B. Nagaraj, Pt and Hf addition to NiAl Bond Coats and their effect on the lifetime of thermal barrier coatings, The Minerals, Metals and Materials Society, 2001, pp. 79–92.
  • [17] S. Hamadi, M. Bacos, M. Poulain, A. Seyeux, V. Maurice, P. Marcus, Oxidation resistance of a Zr-doped NiAl coating thermochemically deposited on a nickel-based superalloy, Surface and Coating Technology 204 (2009) 756–760.
  • [18] B. Ning, M. Shamsuzzoha, M.L. Weaver, R.C. Bradt, Apparent indentation size effect in a CVD coated Ni-base superalloy, Surface and Coatings Technology 163–164 (2003) 112–117.
  • [19] B.A. Nagaraj, J.L. Williams, U.S. Patent 6,602,356 (2003).
  • [20] J. Restall, B. Gill, C. Hayman, N. Archer, A process for protecting gas turbine blade cooling passages against degradation, in: Superalloys, Metals Park, Ohio, 1980, pp. 405–411.
  • [21] J. Benoist, K.F. Badawi, A. Malie, C. Ramade, Microstructure of Pt-modified aluminide coatings on Ni-based superalloys, Surface and Coatings Technology 182 (2004) 14–23.
  • [22] M. Yavorska, J. Sieniawski, M. Zielińska, Functional properties of aluminide layer deposited on inconel 713 LC Ni-based superalloy in the CVD process, Archives of Metallurgy and Materials 56 (2011) 187–192.
  • [23] M. Zielińska, J. Sieniawski, M. Yavorska, M. Motyka, Influence of chemical composition of nickel based superalloy on the formation of aluminide coatings, Archives of Metallurgy and Materials 56 (2011) 193–197.
  • [24] J. Romanowska, M. Zagula-Yavorska, J. Sieniawski, Zirconium influence on microstructure of aluminide coatings deposited on nickel substrate by CVD method, Bulletin of Materials Science 36 (2013) 1043–1048.
  • [25] M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, R. Filip, Microstructure and oxidation resistance of an aluminide coatings on the nickel based superalloy Mar M247 deposited by CVD aluminizing process, Archives of Metallurgy and Materials 58 (2013) 697–701.
  • [26] M. Zagula-Yavorska, J. Morgiel, J. Romanowska, J. Sieniawski, Nanoparticles in zirconium-doped aluminide coatings, Materials Letters 139 (2015) 50–54.
  • [27] J. Romanowska, Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel, Computer Coupling of Phase Diagrams and Thermochemistry 44 (2014) 114–118.
  • [28] A. Nowotnik, J. Sieniawski, M. Zawadzki, M. Goral, The effect of long-term annealing on microstructure of aluminide coatings deposited on MAR M200 superalloy by CVD method, Key Engineering Materials 477 (2014) 592–593.
  • [29] M. Yavorska, J. Sieniawski, Thermal stability of microstructure of aluminide layer deposited by CVD method on CMSX 4 nickel base superalloy, Materials Science Forum 674 (2011) 89–96.
  • [30] J.H. Chen, J.A. Little, Degradation of the platinum aluminide coating on CMSX4 at 1100 8C, Surface and Coatings Technology 92 (1997) 69–77.
  • [31] C.S. Proctor, Department of Materials Science and Metallurgy, (Ph.D. thesis), University of Cambridge, 1994.
  • [32] S. Bose, High Temperature Coatings, Burlington, 2007.
  • [33] Y. Wang, M. Suneson, Synthesis of Hf-modified aluminide coatings on Ni-base superalloys, Surface and Coatings Technology 206 (2011) 1218–1228.
  • [34] H. Hindam, D.P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys, Journal of the Electrochemical Society 5/6 (129) (1982) 245–284.
  • [35] F. Pedraza, Implications of diffusion on the composition and microstructures of platinum modified aluminide coatings on CMSX 4 single crystal superalloys, Defect and Diffusion Forum 289–292 (2009) 277–284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a56c475c-9d0c-4583-99b1-69f173895753
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.