PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Regularity, pointwise completeness and pointwise generacy of descriptor linear electrical circuits

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering 2014 (28-29.04.2014; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
The regularity, pointwise completeness and pointwise generacy of descriptor linear electrical circuits composed of resistances, capacitances, inductances and voltage (current) sources are addressed. It is shown that every descriptor electrical circuit is a linear system with regular pencil. Conditions for the pointwise completeness and pointwise generacy of the descriptor linear electrical circuits are established. The considerations are illustrated by examples of descriptor electrical circuits.
Rocznik
Tom
Strony
9--28
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Białystok University of Technology
Bibliografia
  • [1] Bru, R., Coll, C., Romero-Vivo S. and Sanchez, E., Some problems about structural properties of positive descriptor systems, Lecture Notes in Control and Inform. Sci., vol. 294, Springer, Berlin, pp. 233-240, 2003.
  • [2] Bru, R., Coll, C. and Sanchez, E., Structural properties of positive linear timeinvariant difference-algebraic equations, Linear Algebra Appl., vol. 349, pp. 1-10, 2002.
  • [3] Busłowicz M., Pointwise completeness and pointwise degeneracy of linear discretetime systems of fractional order. Zesz. Nauk. Pol. Śląskiej, Automatyka, No. 151, 19-24, 2008 (in Polish).
  • [4] Busłowicz M., Kociszewski R., Trzasko W., Pointwise completeness and pointwise degeneracy of positive discrete-time systems with delays. Zesz. Nauk. Pol. Śląskiej, Automatyka, No. 145, pp. 55-56, 2006 (in Polish).
  • [5] Choundhury A. K., Necessary and sufficient conditions of pointwise completeness of linear time-invariant delay-differential systems. Int. J. Control, Vol. 16, No. 6, pp. 1083-1100, 1972.
  • [6] Campbell, S.L., Meyer, C.D. and Rose, N.J., Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAMJ Appl. Math., vol. 31, no. 3, pp. 411-425, 1976.
  • [7] Dai, L., Singular control systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.
  • [8] Guang-Ren Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
  • [9] Farina L. and Rinaldi S., Positive Linear Systems; Theory and Applications, J. Wiley, New York 2000.
  • [10] Kaczorek T., Busłowicz M., Pointwise completeness and pointwise degeneracy of linear continuous-time fractional order systems, Journal of Automation, Mobile Robotics & Intelligent Systems, Vol. 3, No. 1, pp.8-11, 2009.
  • [11] Kaczorek, T., Application of Drazin inverse to analysis of descriptor fractional discrete-time linear systems with regular pencils, Int. J. Appl. Math. Comput. Sci., vol. 23, no. 1, pp. 29-34, 2013.
  • [12] Kaczorek, T., Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archives of Control Sciences, vol. 21, no. 3, 2011, pp. 287-298, 2011.
  • [13] Kaczorek T., Drazin inverse matrix method for fractional descriptor continuous-time linear systems, Submitted to Bull. Pol. Ac. Techn. Sci., 2013.
  • [14] Kaczorek, T., Infinite eigenvalue assignment by output-feedbacks for singular systems, Int. J. Appl. Math. Comput. Sci., vol. 14, no. 1, pp. 19-23, 2004.
  • [15] Kaczorek, T., Linear Control Systems, vol. 1, Research Studies Press J. Wiley, New York, 1992.
  • [16] Kaczorek, T., Minimum energy control of positive fractional descriptor continuoustime linear systems, IET Control Theory and Applications, 2013 (in Press).
  • [17] Kaczorek T., Pointwise completeness and pointwise degeneracy of 2D standard and positive Fornasini-Marchesini models, COMPEL, vol. 30, no. 2, pp. 656-670, 2011.
  • [18] Kaczorek T., Pointwise completeness and pointwise degeneracy of standard and positive fractional linear systems with state-feedbacks, Archives of Control Sciences, Vol. 19, pp. 295-306, 2009.
  • [19] Kaczorek T., Pointwise completeness and pointwise degeneracy of standard and positive linear systems with state-feedbacks, JAMRIS, Vol. 4, No. 1, pp. 3-7, 2010.
  • [20] Kaczorek, T., Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
  • [21] Kaczorek T., Reduction and decomposition of singular fractional discrete-time linear systems, Acta Mechanica et Automatica, Vol. 5, No. 4, pp. 62-66, 2011.
  • [22] Kaczorek, T., Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2011.
  • [23] Kaczorek T., Singular fractional discrete-time linear systems, Control and Cybernetics, vol. 40, no.3, pp. 753-761, 2011.
  • [24] Olbrot A., On degeneracy and related problems for linear constant time-lag systems, Ricerche di Automatica, Vol. 3, No. 3, pp.203-220, 1972.
  • [25] Opov V. M., Pointwise degeneracy of linear time-invariant delay-differential equations, Journal of Diff. Equation, Vol. 11, pp.541-561, 1972.
  • [26] Trzasko W., Busłowicz M., Kaczorek T., Pointwise completeness of discrete-time cone-systems with delays, Proc. EUROCON 2007, Warsaw, pp. 606-611.
  • [27] Weiss L., Controllability for various linear and nonlinear systems models, Lecture Notes in Mathematics, Vol. 144, Seminar on Differential Equations and Dynamic System II, Springer, Berlin, pp. 250-262, 1970.
  • [28] Virnik E.: Stability analysis of positive descriptor systems, Linear Algebra and its Applications, vol. 429, pp. 2640-2659, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a55e4096-02ae-4ab7-a719-5def8a46fcd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.