PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of the flow structure and heat transfer in rotating cavity with and without jet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we investigate the flow with heat transfer in the rotating cavity of different geometrical parameters and different Reynolds numbers. We focus on the near-wall characteristics and compare our results with the experimental and numerical data published in literature as well as with the theoretical results. We also present the preliminary results obtained for rotor/rotor configurations with the axial annular jet. Computations are performed using pseudo-spectral methods. Parallelization of the DNS code allows us to perform computations on the meshes with up to 35 million collocation points.
Rocznik
Strony
527--548
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Institute of Thermal Engineering Poznań University of Technology ul. Piotrowo 3 60-965, Poznań, Poland
  • Institute of Thermal Engineering Poznań University of Technology ul. Piotrowo 3 60-965, Poznań, Poland
Bibliografia
  • 1. A. Randriamampianina, L. Elena, J.P. Fontaine, R. Schiestel, Numerical prediction of laminar, transitional and turbulent flows in shrouded rotor-stator systems, Phys. Fluids, 9, 1696, 1997.
  • 2. E. Serre, J.P. Pulicani, A three-dimensional pseudospectral method for rotating flows in a cylinder, Computers & Fluids, 30, 491, 2001.
  • 3. E. Serre, E. Tuliszka-Sznitko, P. Bontoux, Coupled theoretical and numerical study of the flow transition between a rotating and a stationary disk, Phys. Fluids, 16, 3, 688– 707, 2004.
  • 4. M. Lygren, H.I. Andersson, Large eddy simulations of the turbulent flow between a rotating and a stationary disk, ZAMP, 55, 268, 2004.
  • 5. S. Poncet, R. Schiestel, Numerical modeling of heat transfer and fluid flow in rotor stator cavities with throughflow, Int. J. Heat Mass Transfer, 50, 1528–1544, 2007.
  • 6. E. Severac, E. Serre, A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities, J. Comput. Phys., 226, 1234–1255, 2007.
  • 7. A. Randriamampianina, P. Bontoux, B. Roux, Buoyancy driven flows in rotating cylindrical annulus, Int. J. Heat Mass. Transfer, 30, 1275–1292, 1987 [in French].
  • 8. J. Pelle, S. Harmand, Heat transfer measurements in an opened rotor–stator system air gap, Exp. Therm. Fluid Sci., 31, 165–180, 2007.
  • 9. E. Tuliszka-Sznitko, W. Majchrowski, K. Kiełczewski, Investigation of transitional and turbulent heat and momentum transport in rotating cavity, Int. J. Heat and Fluid Flow, 35, 52–60, 2012.
  • 10. E. Tuliszka-Sznitko, A. Zielinski, W. Majchrowski, Large eddy Simulation of transitional flows in rotor/stator cavity, Archives Mech., 61, 2, 93–118, 2009.
  • 11. C.J. Elkins, J.K. Eaton, Turbulent heat and momentum transport on a rotating disk, J. Fluid Mech., 402, 225–253, 2000.
  • 12. N. Kasagi, Micro gas turbine/solid oxide fuel cell hybrid cycles for distributed energy system, The University of Tokyo, 1999–2003.
  • 13. H. Wu, N. Kasagi, Effects of arbitrary directional system rotation on turbulent channel flow, Phys. Fluids, 16, 979–990, 2004.
  • 14. H. Wu, N. Kasagi, Turbulent heat transfer in a channel flow with arbitrary directional system rotation, Int. J. Heat Mass Transfer, 47, 4579–4591, 2004.
  • 15. R. Pasquetti, C.J. Xu, High-order algorithm for large eddy simulation of incompressible flow, J. Sci. Comput., 17, 1–4, 273, 2002.
  • 16. E. Severac, P. Poncet, E. Serre, A spectral vanishing viscosity for the LES of turbulent flows within rotating cavity, J. of Comput. Physics, 226, 1234–1255, 2007.
  • 17. E. Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM, J. Numer. Anal., 26, 30–44, 1989.
  • 18. G.S. Karamanos, G.E. Karniadakis, A spectral vanishing viscosity method for large eddy simulation, J. Comput. Physics, 163, 22, 2000.
  • 19. Y. Maday, S. Kaber, E. Tadmor, Legendre pseudo-spectral viscosity method for non-linear conservation laws, SIAM, J. Numer. Anal., 30, 2, 321, 1993.
  • 20. S. Sarra, Chebyshev, Pseudospectral methods for conservation laws with source terms and application to multiphase flow, Phd Thesis, Morgantown, West Virginia, 2002.
  • 21. K. Hanjalic, B. Launder, Modelling Turbulence in Engineering and the Environment, Cambridge, 2011.
  • 22. H. Littell, J. Eaton, An experimental investigation of the three-dimensional boundary layer on a rotating disk, Tech. Rep. MD-60. Stanford University, Department of Mechanical, Engineering, Thermosciences Div., 1991.
  • 23. J.M. Owen, R.H. Rogers, Flow and heat transfer in rotating-disc systems, Part II, Research Studies Press Taunton, Somerset, England.
  • 24. E. Crespo del Arco, P. Maubert, A. Randriamampianina, P. Bontoux, Spatio-temporal behaviour in a rotating annulus with a source-sink flow, J. Fluid Mech., 328, 1996.
  • 25. N. Nikitenko, Experimental investigation of heat exchange of a disk and screen, J. Engng. Phys., 6, 1–11, 1963.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a55c0423-e98f-44f6-a571-8d7dcee423dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.