PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Studium wykonalności wykorzystania wskaźników roślinnych generowanych na podstawie obrazów satelitarnych Sentinel-2 i PlanetScope do monitorowania faz rozwoju pszenicy ozimej
Języki publikacji
EN
Abstrakty
EN
The main objective of the presented work is to assess applicability of vegetation indices derived from non-commercial and commercial satellites for monitoring development stages of winter wheat. Two types of data were used in the study: Sentinel-2 and PlanetScope images. Various vegetation indices were derived from these data and correlated with ground measured LAI values. The results of the study revealed that there is a good relationship between satellite based indices – Normalized Difference Vegetation Index – NDVI, Enhanced Vegetation Index – EVI, Soil Adjusted Vegetation Index – SAVI and ground based LAI, but strength of this relation depends on the phase of crop development. Sentinel-2 and PlanetScope data are suitable for estimating LAI with high accuracy and their precision for LAI determination is very similar. Depending on availability, they can be used interchangeably. The highest correlation between ground measured LAI and vegetation indices for Sentinel-2 appeared SAVI – r = 0.862 (phase: early tillering) and for PlanetScope NDVI – r = 0.667 (phase: ripening). Compatibility of average LAI values derived from PlanetScope and Sentinel-2 images are 33.21% and 10.63%.
PL
Głównym celem prezentowanej pracy jest ocena przydatności wskaźników roślinnych pochodzących z komercyjnego i niekomercyjnego satelity do monitorowania faz rozwoju pszenicy ozimej. W badaniach wykorzystano dwa typy danych: zobrazowania satelitarne PlanetScope i Sentinel-2. Na ich podstawie wygenerowano różne wskaźniki wegetacji i skorelowano je z wartościami LAI pomierzonymi w terenie. Wyniki analiz wykazały, że istnieje wysoki związek pomiędzy wskaźnikami NDVI, EVI i SAVI a naziemnymi wartościami LAI. Okazało się, że siła tej zależności zależy od fazy rozwoju upraw. Stwierdzono, że zobrazowania satelitarne Sentinel-2 i PlanetScope pozwalają na szacowania LAI z dużą dokładnością, a dokładność obu danych jest podobna. W zależności od dostępności bezchmurnych zdjęć, obrazy można stosować zamiennie.
Rocznik
Strony
27--35
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geography and Regional Studies, Department of Geoinformatics, Cartography and Remote Sensing; Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland, Tel.: +48 22 3291978, Fax: +48 22 3291950, ORCID: https://orcid.org/0000-0001-8991-7306
  • Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland, Tel.: +48 22 3291989, Fax: +48 22 3291950, ORCID: https://orcid.org/0000-0002-2950-1592
Bibliografia
  • [1] Aboelghar M., Arafat S., Saleh A., Naeem S., Shirbeny M., Belal A., (2013): Retrieving Leaf Area Index from SPOT4 satellite data, The Egyptian Journal of Remote Sensing and Space Science, 13, pp. 121–127.
  • [2] Bochenek Z., Dąbrowska-Zielińska K., Gurdak R., Niro F., Bartold M., Grzybowski P., (2017): Validation of the LAI biophysical product derived from Sentinel-2 and Proba-V images for winter wheat in western Poland, Geoinformation Issues, Vol. 9, No 1(9), pp. 15–26.
  • [3] Carlson T.N., Ripley D.A., (1997): On the relation between NDVI, Fractional Vegetation Cover and Leaf Area Index, Remote Sensing of Environment 62, pp. 241–252.
  • [4] Chen J.M., Black T.A., (1992): Defining leaf area index for non-flat leaves, Plant, Cell & Environment, 15, pp. 421–429.
  • [5] Chlingaryan A., Sukkarieh S., Whelan B., (2018): Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review, Computers and Electronics in Agriculture, 151, pp. 61–69.
  • [6] Dabrowska-Zielinska K., Kogan F., Ciolkosz A., Gruszczynska M., Kowalik W., (2002): Modelling crop growth conditions and crop yield in Poland using AVHRR-based indices, International Journal of Remote Sensing, Vol. 23, No 6, pp. 1109–1123.
  • [7] Frampton W.J., Dash J., Watmough G., Milton E.J., (2013): Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation, ISPRS Journal of Photogrammetry and Remote Sensing, 82, pp. 83–92.
  • [8] Friedl M.A., Schimel D.S., Michaelsen J., Davis F.W., Walker H., (1994): Estimating grassland biomass and Leaf Area Index using ground and satellite data, International Journal of Remote Sensing, Vol. 15, Issue 7, pp. 1401–1420.
  • [9] Gašparović M., Medak D., Pilaš I., Jurjević L., Balenović I., (2018): Fusion of Sentinel-2 and PlanetScope imagery for vegetation detection and monitoring, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-1, pp. 155–160.
  • [10] Huete A.R., Liu H., Batchily K., Leeuwen W., (1997): A comparison of vegetation indices over a global set of TM images for EOS-MODIS, Remote Sensing of Environment, No 59(3), pp. 440-451.
  • [11] Huete A.R., (1988): A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, Vol. 25, Issue 3, pp. 259–309.
  • [12] Jiang J., Xiao Z., Wang J., Song J., (2016): Multiscale estimation of Leaf Area Index from satellite observations based on an ensemble multiscale filter, Remote Sensing, 8, pp. 229–242.
  • [13] Kowalik W., Dabrowska-Zielinska K., Meroni M., Raczka T.U., de Wit A., (2014): Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries, International Journal of Applied Earth Observation and Geoinformation 32(2014), pp. 228–239.
  • [14] Milas A.S., Vincent R.K., (2016): Monitoring Landsat vegetation indices for different crop treatments and soil chemistry, International Journal of Remote Sensing, Vol. 38, pp. 141–160.
  • [15] Price J.C., (1993): Estimating Leaf Area Index from satellite data, IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, Issue 3, pp. 727–734.
  • [16] Rousse J.W., Haas R.H., Schell J.A., Deering D.W., (1973): Monitoring vegetation systems in the Great Plains with ERTS, 3rd ERTS Symposium, NASA SP-351 I, pp. 309–317.
  • [17] Turner D.P., Cohen W.B., Kennedy R.E., Fassnacht K.S., Briggs J.M., (1999): Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites, Remote Sensing of Environment, 70, pp. 52–68.
  • [18] Waldner F., Canto, G.S., Defourny P., (2015): Automated annual cropland mapping using knowledge-based temporal features, ISPRS J. Photogramm. Remote Sens., 110, pp. 1–13.
  • [19] Watson D.J., (1947): Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years, Annals of Botany, 11, pp. 41–76.
  • [20] Zhang M., Wu B., Yu M., Zou W., Zheng Y., (2014): Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio, Remote Sensing, 6, pp. 5774–5794.
  • [21] Zheng G., Moskal L.M., (2009): Retrieving Leaf Area Index (LAI) using remote sensing; theories, methods and sensors, Sensors 2009, 9, pp. 2719–2745.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a554045b-aac2-4363-a45f-da8b3a07b745
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.