PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Five divalent transition metals Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes have been synthesized using 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid (H3L) Schiff base as a ligand derived from the condensation reaction between 4-amino-3-hydroxynaphthalene-1-sulfonic acid and 2-hydroxy-1-naphthalde-hyde. The synthesized complexes were characterized using microanalytical, conductivity, FTIR, electronic, magnetic, ESR, thermal, and SEM studies. The microanalytical values revealed that the metal-to-ligand stoichiometry is 1:1 with molecular formula [M2+(NaL)(H2O)x].nH2O (where x = 3 for all metal ions except of Zn(II) equal x = 1; n = 4, 10, 7, 4, and 6 for Cu(II), Co(II), Ni(II), Mn(II) and Zn(II), respectively). The molar conductivity result indicates that all these complexes are neutral in nature with non-electrolytic behavior. Dependently on the magnetic, electronic, and ESR spectral data, octahedral geometry is proposed for all the complexes except to zinc(II) complex is tetrahedral. Thermal assignments of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. SEM micrographs of the synthesized complexes have a different surface morphologies. The antimicrobial activity data show that metal complexes are more potent than the parent ligand.
Rocznik
Strony
26--34
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Faculty of Education, Shaqra University, Al Muzahimiyah, Shaqra, Riyadh Province, P.O. Box 90, Zip Code 11921,Kingdom Saudi Arabia
Bibliografia
  • 1. Al Zoubi, W. & Al Mohanna, N. (2014). Membrane sensors based on Schiff bases as chelating ionophores–A review. Spectrochim. Acta, Part A, 132, 854–870. doi.org/10.1016/j.saa.2014.04.176.
  • 2. Al Zoubi W. Al-Hamdani A.A.S. & Kaseem M. (2016). Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl. Organomet. Chem. 30 810–817. doi.org/10.1002/aoc.3506.
  • 3. Al Zoubi W. & Ko Y.G. (2017). Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Appl. Organom. Chem. 31 e3574.
  • 4. Al-Hamdani, A.A.S., Balkhi, A.M., Falah, A. & Shaker, S.A. (2016). Synthesis and investigation of thermal properties of vanadyl complexes with azo-containing Schiff-base dyes. J. Saudi, Chem. Soc., 20, 487–501.
  • 5. Duffy, K.J., Darcy, M.G., Delorme, E., Dillon, S.B., Eppley, D.F., Erickson-Miller, C., Giampa, L., Hopson, C.B., Huang, Y., Keenan, R.M., Lamb, P., Leong, L., Liu, N., Miller, S.G., Price, A.T., Rosen, J., Shah, R., Shaw, T.N., Smith, H., Stark, K.C., Tian, S.-S., Tyree, C., Wiggall, K.J., Zhang, L. & Luengo, J.I. (2001). Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics are nonpeptidyl promoters of megakaryocytopoiesis. J. Med. Chem., 44(22), 3730–3745.
  • 6. Shweta, Neeraj, Asthana, S.K., Mishra, R.K. & Upadhyay, K.K. (2016). Design-specific mechanistic regulation of the sensing phenomena of two Schiff bases towards Al3. RSC Adv., 6, 55430–55437.
  • 7. Bose, D., Banerjee, J., Rahaman, S.K.H., Mostafa, G., Fun, H.K., Bailey, W.R.D., Zaworotko, M.J. & Ghosh, B.K. (2004). Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organicblockers: supramolecular synthons based on π–π and/or C–H..π interactions. Polyhedron, 23, 2045–2053.
  • 8. El-Boraey, H.A. (2005). Structural and thermal studies of some aroylhydrazone Schiff’s bases-transition metal complexes. J. Therm. Anal. Calorim., 81(2), 339–346.
  • 9. Al-Shirif, A.S.M. & Abdel-Fattah, H.M. (2003). Thermogravimetric and spectroscopic characterization of trivalent lanthanide chelates with some Schiff bases. J. Therm. Anal. Calorim., 71, 643–649.
  • 10. Grivani, G., Bruno, G., Amiri Rudbari, H. & Khalaji, A.D. (2012). Synthesis, characterization and crystal structure determination of a new oxovanadium (IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene. Inorg. Chem. Commun., 18, 15–20.
  • 11. Khalaji, A.D., Fejfarova, K. & Dusek, M. (2010). Synthesis and Characterization of Two Diimine Schiff Bases Derived from 2,4-Dimethoxybenzaldehyde: The Crystal Structure of N,N’-Bis(2,4 dimethoxybenzylidene)- 1,2-diaminoethane. Acta Chim. Slov., 57, 257–261.
  • 12. Khalaji, A.D., Najafi Chermahini, A., Fejfarova, K. & Dusek, M. (2010). Synthesis, characterization, crystal structure, and theoretical studies on Schiff-base compound 6-[(5-Bromopyridin-2-yl) iminomethyl] phenol. Struct. Chem., 21(1), 153–157.
  • 13. Khandar, A.A. & Rezvani, Z. (1999). Preparation and thermal properties of the bis [5-((4-heptyloxyphenyl) azo)--N-(4-alkoxyphenyl)-salicylaldiminato] copper (II) complex homologues. Polyhedron, 18, 129.
  • 14. El-Deen, I.M., Belal, A.A.M., Farid, N.Y., Zakaria, R. & Refat, M.S. (2015). Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand. Spectrochimica Acta Part A, 149, 771–787.
  • 15. Bauer, A.W., Kirby, W.M.M., Sherris, J.C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 36, 493–496.
  • 16. Geary, W. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J. Coord. Chem. Rev., 7, 81–122.
  • 17. Kavitha, P. & Reddy, K.L. (2016). Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiffbase. Arabian J. Chem., 9, 596–605.
  • 18. Bellamy, L.J. (1980). The Infrared Spectra of Complex Molecules, Chapman and Hall, London.
  • 19. Hanai, K. & Maki, Y. (1993). Vibrational spectra of β-lactams—III. potassium 2-azetidinone-1-sulfonate and its isotopic compounds. Spectrochim Acta A, 49, 1131–1137.
  • 20. Wojciechowski, K. & Jerzy, S. (2000). Effect of the sulphonic group position on the properties of monoazo dyes. Dyes and Pigments, 44, 137–147.
  • 21. Socrates, G. (1980). Infrared Characteristic Group Frequencies. John Wiley and Sons, New York.
  • 22. Snehalatha, M., Ravikumar, C., Sekar, N., Jayakumar, V.S., & Joe, I.H. (2008). F.T-Raman, IR and UV-visible spectral investigations and ab initio computations of a nonlinear food dye amaranth. J. Raman Spectrosc., 39, 928–936.
  • 23. Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies. John Wiley and Sons, Chichester.
  • 24. Lever, A.B.P. (1997). Inorganic Electronic Spectroscopy. 2nd ed., Elsevier, Amsterdam.
  • 25. Wang, H., Zhao, P., Shao, D., Zhang, J. & Zhu, Y. (2009). Synthesis, characterization and spectra studies on Zn (II) and Cu (II) complexes with thiocarbamide ligand containing Schiffbase group. Struct. Chem., 20, 995–1003.
  • 26. Raman, N., Ravichandran, S. & Thangarajan, C. (2004). Copper (II), cobalt (II), nickel (II) and zinc (II) complexes of Schiff base derived from benzil-2, 4-dinitrophenylhydrazone with aniline. J. Chem. Sci., 116, 215–219.
  • 27. Lever, A.B.P. (1968). Electronic spectra of some transition metal complexes: Derivation of Dq and B. J. Chem. Edu., 45, 711.
  • 28. Ramam, N., Kulandaisami, A. & Shunmugasundaram, A. (2001). Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2, 3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide. Trans. Met. Chem., 26, 131135.
  • 29. Sankhala, D.S., Mathur, R.C. & Mishra, S.N. (1980). Synthesis, magnetic and spectral studies on some adducts of manganese (II) acetylacetonate. Indian J. Chem., 19A, 75–82.
  • 30. Hathaway, B.J. & Billing, D.E. (1970). The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion. Coord. Chem. Rev., 5, 143–207.
  • 31. Hathaway, B.J. (1984). A new look at the stereochemistry and electronic properties of complexes of the copper (II) ion. Struct. Bonding (Berlin), 57, 55.
  • 32. Coats, A.W. & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68–69.
  • 33. Horowitz, H.W. & Metzger, G.A. (1963). A new analysis of thermogravimetric traces. Anal. Chem., 35, 1464–1468.
  • 34. Chourasia, P., Suryesh, K.K. & Mishra, A.P. (1993). Synthesisand structural investigation of some mixed-ligand selenito complexes of cobalt (II). Proc. Ind. Acad. Sci., 105, 173–181.
  • 35. Frost, A.A. & Pearson, R.G. (1961). Kinetics and Mechanism, New York; Wiley.
  • 36. Raman, N., Raja, S.J. & Sakthivel, A. (2009). Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J. Coord. Chem., 62, 691–709.
  • 37. Kulkarni, A.D., Bagihalli, G.B., Patil, S.A. & Badami, P.S. (2009). Synthesis, characterization, electrochemical and in-vitro antimicrobial studies of Co(II), Ni(II), and Cu(II) complexes with Schiff bases of formyl coumarin derivatives. J. Coord. Chem., 62, 3060–3072.
  • 38. Li, F., Feterl, M., Mulayana, Y., Warner, J.M., Collins, J.G. & Keene, F.R. (2012). In vitro susceptibility and cellular uptake for a new class of antimicrobial agents: dinuclear ruthenium(II) complexes. J. Antimicrob. Chemother., 67, 2686–2695.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5538870-317e-45d8-b90c-f3156d4ac631
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.