PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismotectonic implications of the 2020 Samos, Greece, Mw 7.0 mainshock based on high resolution aftershock relocation and source slip model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 30 October 2020, Mw 7.0 Samos mainshock took place in the ofshore north of Samos Island in eastern Aegean area, previously struck in 1904 with a comparable magnitude earthquake ofshore the southern coastline. The investigation of the aftershock seismicity evolution and the properties of the activated fault network was accomplished with aftershock relocation performed with the double-diference and cross-correlation techniques. The highly accurate relocated seismicity illustrates a well-defned E–W activated structure located deeper than 5 km with an average depth of~12 km. Moment tensor solutions indicate mostly normal faulting with an average T-axis~ 185ο . Strong-motion waveform modeling revealed a N-dipping fault plane with a coseismic slip patch of 36 km × 22 km and a maximum slip equal to 1 m at 12 km depth. The slip is mainly concentrated in a single asperity implying a rupture mode of asperities breaking in isolated earthquakes rather than to cooperate to produce a larger rupture. Coulomb stress calculations unveil increased positive static stress changes values at the locations of the majority of the aftershocks and activation of minor fault segments by stress transfer.
Czasopismo
Rocznik
Strony
979--996
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
  • Department of Geophysics, Seismology Section, Faculty of Engineering, Istanbul University – Cerrahpasa, Istanbul, Turkey
autor
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
  • Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Bibliografia
  • 1. Aktar M, Karabulut H, Ozalaybey S, Childs D (2007) A conjugate strike-slip fault system within the extensional tectonics of Western Turkey. Geophys J Int 171(3):1363–1375
  • 2. Akyol N, Zhu L, Mitchell BJ, Sozbilir H, Kekovalı K (2006) Crustal structure and local seismicity in western Anatolia. Geophys J Int 166:1259–1269. https://doi.org/10.1111/j.1365-246X.2006.03053.x
  • 3. Benetatos C, Kiratzi A, Ganas A, Ziazia A, Plessa A, Drakatos G (2006) Strike-slip motions in the Gulf of Siğaçik (western Turkey): properties of the 17 October 2005 earthquake seismic sequence. Tectonophysics 426(3–4):263–279. https://doi.org/10.1016/j.tecto.2006.08.003
  • 4. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) ObsPy: a python toolbox for seismology. Seismol Res Lett 81(3):530–533. https://doi.org/10.1785/gssrl.81.3.530
  • 5. Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116(4–5):615–626
  • 6. Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north–eastern Aegean. Tectonophysics 597–587:106–122. https://doi.org/10.1016/j.tecto.2012.11.026
  • 7. de Arcangelis L, Godano C, Lippiello E (2018) The overlap of aftershock coda waves and short–term postseismic forecasting. J Geophys Res 123:5661–5674. https://doi.org/10.1029/2018JB015518
  • 8. Dieterich J (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res Solid Earth 99(B2):2601–2618
  • 9. Disaster and Emergency Management Authority. Turkish National Seismic Network. Department of Earthquake, Disaster and Emergency Management Authority. https://doi.org/10.7914/SN/TU
  • 10. Efron B (1982) The jackknife, the bootstrap and other resampling plans. Soc Ind Appl Math. https://doi.org/10.1137/1.9781611970319
  • 11. Erickson L (1986) User’s manual for DIS3D: a 3-dimensional dislocation program with applications to faulting in the Earth, Master’s Thesis, Stanford University, Stanford, California, pp.167
  • 12. Evelpidou N, Karkani A, Kampolis I (2021) Relative sea level changes and morphotectonic implications triggered by the Samos earthquake of 30th October 2020. J Mar Sci Eng 9:40. https://doi.org/10.3390/jmse9010040
  • 13. Foumelis M, Papazachos C, Papadimitriou E, Karakostas V, Ampatzidis D, Moshopoulos G, Kostoglou A, Ilieva M, Minos–Minopoulos D, Mouratidis A, Kkallas C, Chatzipetros A (2021) On rapid multidisciplinary response aspects for Samos 2020 Mw 7.0 earthquake. Acta Geophys. https://doi.org/10.1007/s11600-021-00578-6
  • 14. Genç CŞ, Altunkaynak Ş, Karacık Z, Yazman M, Yılmaz Y (2001) The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodin Acta 14(1–3):45–55. https://doi.org/10.1016/S0985-3111(00)01061-5
  • 15. Gross S, Kisslinger C (1997) Estimating tectonic stress rate and state with Landers aftershocks. J Geophys Res Solid Earth 102(B4):7603–7612
  • 16. Harris R (1998) Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. J Geophys Res Solid Earth 103 (B10):24347–24358
  • 17. Kagan YY (1991) 3–D rotation of double-couple earthquake sources. Geophys J Int 106:709–716. https://doi.org/10.1111/j.1365-246X.1991.tb06343.x
  • 18. Karakostas VG, Papadimitriou EE, Karakaisis GF, Papazachos CB, Scordilis EM, Vargemezis G, Aidona E (2003) The 2001 Skyros, northern Aegean, Greece, Earthquake sequence: off fault aftershocks, tectonic implications, and seismicity triggering. Geophys Res Lett 30(1):1012. https://doi.org/10.1029/2002GL015814
  • 19. Karakostas VG, Papadimitriou EE, Tranos MD, Papazachos CB (2010) Active seismotectonic structures in the area of Chios Island, north Aegean Sea, revealed from microseismicity and fault plane solutions. Bull Geolog Soc Greece 43(3):2064–2074
  • 20. Karakostas VG, Papadimitriou EE, Gospodinov D (2014) Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities. Geophys J Intern 197(1):525–541. https://doi.org/10.1093/gji/ggt523
  • 21. Karakostas V, Kostoglou A, Chorozoglou D, Papadimitriou E (2020) Relocation of the 2018 Zakynthos, Greece, aftershock sequence: spatiotemporal analysis deciphering mechanism diversity and aftershock statistics. Acta Geophys 68:1263–1294. https://doi.org/10.1007/s11600-020-00483-4
  • 22. Kassaras I, Kapetanidis V, Ganas A, Tsanis A, Kosma C, Karakonstantis A, Valkaniotis S, Chailas S, Kouskouna V, Papadimitriou P (2020) The new seismotectonic atlas of Greece (v.10) and its implementation. Geosciences 10:447. https://doi.org/10.3390/geosciences10110447
  • 23. Kikuchi M, Kanamori H (1991) Inversion of complex body waves—III. Bull Seismol Soc Am 81(6):2335–2350
  • 24. King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953
  • 25. Klein FW (2000) User’s Guide to HYPOINVERSE–2000, a Fortran program to solve earthquake locations and magnitudes. U. S. Geological Survey. Open File Report 02–171 Version 1.0
  • 26. KOERI, Kandilli Observatory and Earthquake Research Institute, Boğaziçi University Bogazici University Kandilli Observatory and Earthquake Research Institute. Int Fed Dig Seismogr Netw. https://doi.org/10.7914/SN/KO
  • 27. Lippiello E, de Arcangelis L, Godano C (2009) Role of static stress diffusion in the spatiotemporal organization of aftershocks. Phys Rev Lett 103:038501
  • 28. Lippiello E, Cirillo Α, Godano C, Papadimitriou E, Karakostas V (2016) Real–time forecast of aftershocks from a single seismic station signal. Geophys Res Lett 43:6252–6258. https://doi.org/10.1002/2016GL069748
  • 29. Lippiello E, Petrillo G, Godano C, Trameli A, Papadimitriou E, Karakostas V (2019) Forecasting of the first hour aftershocks by means of the perceived magnitude. Nat Commun 10:2953. https://doi.org/10.1038/s41467-019-10763-3
  • 30. McClusky S, Balassanian S, Barka A, Demir C, Georgiev I, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradisis D, Peter Y, Prilepi M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksoz MN, Veis G (2000) GPS constraints on crustal movements and deformations in the Eastern Mediterranean (1988–1997): implications for plate dynamics. J Geophys Res 105:5695–5719
  • 31. McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J R astron Soc 30:109–185
  • 32. McKenzie DP (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J R Astron Soc 55:217–254
  • 33. Mountrakis D, Kilias A, Vavliakis E, Psilovikos A, Thomaidou E (2003) Neotectonic map of Samos Island (Aegean Sea, Greece): implication of Geographical Information Systems in the geological mapping. In 4th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy, 1, pp. 11–13
  • 34. Ocakoğlu N, Demirbag E, Kuşçu İ (2004) Neotectonic structures in the area offshore of Alaçati, Doğanbey and Kuşadası (western Turkey): evidence of strike-slip faulting in the Aegean extensional province. Tectonophysics 391(1–4):67–83. https://doi.org/10.1016/j.tecto.2004.07.008
  • 35. Okada Y (1992) Internal deformation due to shear and tensile faults in a half–space. Bull Seismol Soc Am 82:1018–1040
  • 36. Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean Arc. J Geophys Res 76:8517–8533
  • 37. Papazachos BC, Papazachou CC (2003) The earthquakes of Greece. Ziti Publication Co., Thessaloniki, p 304
  • 38. Papazachos BC, Papadimitriou EE, Kiratzi AA, Papazachos CB, Louvari EK (1998) Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications. Boll Geof Teor Appl 39:199–218
  • 39. Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. In: 10th International Congress of the Hellenic Geographical Society, Thessaloniki, Greece, 14–17 April 2004, pp. 539–540
  • 40. Rice J, Cleary M (1976) Some basic stress diffusion solutions for fluid–saturated elastic porous media with compressible constituents. Rev Geophys 14:227–241
  • 41. Schaff DP, Waldhauser F (2005) Waveform cross-correlation–based differential travel–time measurements at the northern California seismic network. Bull Seismol Soc Am 95:2446–2461
  • 42. Schaff DP, Bokelmann GHR, Ellsworth WL, Zanzerkia E, Waldhauser F, Beroza G (2004) Optimizing correlation techniques for improved earthquake location. Bull Seismol Soc Am 94:705–721
  • 43. Seyitoglu G, Scott BC (1991) Late Cenozoic crustal extension and basin formation in west Turkey. Geol Mag 128:155–166
  • 44. Sokos EN, Zahradnik J (2008) ISOLA a Fortran code and a Matlab GUI to perform multiple–point source inversion of seismic data. Comput Geosci 34(8):967–977. https://doi.org/10.1016/j.cageo.2007.07.005
  • 45. Sokos EN, Zahradnik J (2013) Evaluating centroid–moment–tensor uncertainty in the new version of ISOLA software. Seismol Res Lett 84(4):656–665. https://doi.org/10.1785/0220130002
  • 46. Tan O (2013) The dense micro-earthquake activity at the boundary between the Anatolian and South Aegean microplates. J Geodyn 65:199–217. https://doi.org/10.1016/j.jog.2012.05.005
  • 47. Tan O, Taymaz T (2006) Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms . Bull Geol Soc Am 409:531–578. https://doi.org/10.1130/2006.2409(25)
  • 48. Tan O, Papadimitriou E, Pabuccu Z, Karakostas V, Yoruk A, Leptokaropoulos K (2014) A detailed analysis of microseismicity in Samos and Kusadasi (eastern Aegean Sea) areas (2014). Acta Geophys 62:1283–1309. https://doi.org/10.2478/s11600-013-0194-1
  • 49. Triantafyllis N, Sokos E, Ilias A, Zahradník J (2016) Scisola: automatic moment tensor solution for SeisComP3. Seismol Res Lett 87:157–163. https://doi.org/10.1785/0220150065
  • 50. Triantafyllou I, Gogou M, Mavroulis S, Lekkas E, Papadopoulos GA, Thravalos M (2021) The tsunami caused by the 30 October 2020 Samos (Aegean Sea) Mw 7.0 earthquake: hydrodynamic features, source properties and impact assessment from post–event field survey and video records. J Mar Sci Eng 9:68. https://doi.org/10.3390/jmse9010068
  • 51. Waldhauser F (2001) HypoDD–a program to compute double-difference hypocenter locations. US Geological Survey Open File Report, pp. 1–113
  • 52. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90:1353–1368
  • 53. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seism Soc Am 84:974–1002
  • 54. Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94:409–410
  • 55. Yagi Y, Kikuchi M (2000) Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near–field data and teleseismic data. Geophys Res Lett 27:1969–1972
  • 56. Yagi Y, Mikumo T, Pacheo J (2004) Source rupture process of the Tecoman, Colima, Mexico earthquake of January 22, 2003, determined by joint inversion of teleseismic body wave and near–field data. Bull Seismol Soc Am 94(5):1795–1807
  • 57. Yılmaz Y, Genç SC, Gürer F, Bozcu M, Yılmaz K, Karacık Z, Altunkaynak S, Elmas A (2000) When did the western Anatolian grabens begin to develop? In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and Magmatism in Turkey and the Surrounding Area. Geolol Soc Special Pub, London, pp 353–384
Uwagi
Korekta artykułu w tym samym numerze, na stronie 997. Numer DOI korekty: 10.1007/s11600-021-00637-y
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a54fe08a-733e-4d53-8273-7a958a5b1319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.