PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light absorption of a polymer based single/multi junction solar cell model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Absorpcja światła polimerowego jedno-/wielozłączowego ogniwa słonecznego
Języki publikacji
EN
Abstrakty
EN
In this paper, a detailed study and simulation modelling on light absorption using PDMS material in a single/multi-junction solar cells is carried out. Since PDMS material is a good absorber of light, it is used as an active layer of a solar cell. We choose PDMS because its properties, mainly exceptional intrinsic stability against thermal and ultraviolet light, induced good mechanical properties and stress over a wide range of temperatures. Good transmittance due to the absence of UV absorbers is one of its best characteristics. With the help of the transfer matrix method, which is used for optical modeling of an organic solar cell, inspired by the McGehee Group in Stanford University. The result and simulation is done using MATLAB and in the end we are going to draw a conclusion about the ideal materials that a good solar cell has to have to have good absorption.
PL
W niniejszym artykule przeprowadzono szczegółowe badania i modelowanie symulacyjne absorpcji światła przy użyciu materiału PDMS w jedno-/wielozłączowych ogniwach słonecznych. Ponieważ materiał PDMS jest dobrym pochłaniaczem światła, jest używany jako aktywna warstwa ogniwa słonecznego. Wybieramy PDMS, ponieważ jego właściwości, głównie wyjątkowa stabilność wewnętrzna w stosunku do światła termicznego i ultrafioletowego, indukowały dobre właściwości mechaniczne i naprężenia w szerokim zakresie temperatur. Dobra przepuszczalność ze względu na brak absorberów UV jest jedną z jego najlepszych cech. Za pomocą metody przeniesienia macierzy, która służy do optycznego modelowania organicznego ogniwa słonecznego, inspirowanej przez Grupę McGehee na Uniwersytecie Stanforda. Wynik i symulację wykonano przy użyciu MATLAB, a na koniec wyciągniemy wniosek na temat idealnych materiałów, które dobre ogniwo słoneczne musi mieć dobrą absorpcję.
Rocznik
Strony
19--22
Opis fizyczny
Bibliogr., 24 poz., rys., tab.
Twórcy
  • Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
  • Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
  • Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
  • Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
Bibliografia
  • [1] Md. S. Islam, “Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method,” Organic Electronics, vol. 41, pp. 143–156, Feb. 2017, doi: 10.1016/j.orgel.2016.10.040.
  • [2] A. E. Alamy, A. Amine, M. Hamidi, and M. Bouachrine, “Conjugated molecules consisting of thienylenevinylene-cocyanophenylene as donor materials for bulk heterojunction solar cells,” p. 10, 2018.
  • [3] S. Abdul Hadi et al., “Design Optimization of Single-Layer Antireflective Coating for GaAs$_{{\bf 1-}{\bm x}}$P$_{\bm x}$/Si Tandem Cells With $\hbox{x} = \hbox{0}$, 0.17, 0.29, and 0.37,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 425–431, Jan. 2015, doi: 10.1109/JPHOTOV.2014.2363559.
  • [4] R. P. Raffaelle, A. Anctil, R. Dileo, A. Merrill, and B. J. Landi, “DYE-SENSITIZED BULK HETEROJUNCTION POLYMER SOLAR CEllS,” p. 6.
  • [5] S. Sigdel et al., “Dye-Sensitized Solar Cells Based on Porous Hollow Tin Oxide Nanofibers,” IEEE Trans. Electron Devices, vol. 62, no. 6, pp. 2027–2032, Jun. 2015, doi: 10.1109/TED.2015.2421475.
  • [6] W. Yoon, J. E. Boercker, M. P. Lumb, D. Placencia, E. E. Foos, and J. G. Tischler, “Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells,” Sci Rep, vol. 3, no. 1, p. 2225, Dec. 2013, doi: 10.1038/srep02225.
  • [7] Ping Shen, Liang Shen, Yongbing Long, and Geheng Chen, “Indium Tin Oxide-Free Polymer Solar Cells: Microcavity Enhancing the Performance Using WO 3 /Au/WO 3 as Transparent Electrode,” IEEE Electron Device Lett., vol. 35, no. 11, pp. 1109–1111, Nov. 2014, doi: 10.1109/LED.2014.2357712.
  • [8] K. Wang, C. Liu, T. Meng, C. Yi, and X. Gong, “Inverted organic photovoltaic cells,” Chem. Soc. Rev., vol. 45, no. 10, pp. 2937– 2975, 2016, doi: 10.1039/C5CS00831J.
  • [9] E. P. Booker, S. L. Bayliss, A. Jen, A. Rao, and N. C. Greenham, “Magnetic Field Modulation of Recombination Processes in Organic Photovoltaics,” IEEE J. Photovoltaics, vol. 9, no. 2, pp. 460–463, Mar. 2019, doi: 10.1109/JPHOTOV.2018.2889574.
  • [10] P. Swapna and Y. S. Rao, “Modeling and simulation of organic solar cell using transfer matrix method,” in 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam, Mar. 2013, pp. 196–199, doi: 10.1109/iMac4s.2013.6526407.
  • [11] J. Khanam and S. Foo, “Modeling of High-Efficiency Multi- Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light,” Polymers, vol. 11, no. 2, p. 383, Feb. 2019, doi: 10.3390/polym11020383.
  • [12] L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics, vol. 86, no. 1, pp. 487–496, Jul. 1999, doi: 10.1063/1.370757.
  • [13] Z. Abada and A. Mellit, “Optical optimization of organic solar cells based on P3HT: PCBM interpenetrating blend,” in 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), Boumerdes, Oct. 2017, pp. 1–6, doi: 10.1109/ICEE-B.2017.8191966.
  • [14] N. Karim, F. I. Mime, Md. R. Islam, and I. M. Mehedi, “Performance analysis of P3HT:PCBM based organic solar cell,” in 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, Feb. 2017, pp. 826–830, doi: 10.1109/ECACE.2017.7913017.
  • [15] W. C. H. Choy and Xingang Ren, “Plasmon-Electrical Effects on Organic Solar Cells by Incorporation of Metal Nanostructures,” IEEE J. Select. Topics Quantum Electron., vol. 22, no. 1, pp. 1–9, Jan. 2016, doi: 10.1109/JSTQE.2015.2442679.
  • [16] A. Gagliardi, S. Wang, and T. Albes, “Simulation of charge Carrier mobility unbalance in organic solar cells,” Organic Electronics, vol. 59, pp. 171–176, Aug. 2018, doi: 10.1016/j.orgel.2018.05.006.
  • [17] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” Journal of Applied Physics, vol. 93, no. 7, pp. 3693–3723, Apr. 2003, doi: 10.1063/1.1534621.
  • [18] D. Yeboah and J. Singh, “Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells,” Electronics, vol. 6, no. 4, p. 75, Oct. 2017, doi: 10.3390/electronics6040075.
  • [19] A. Shah, “Thin-Film Silicon Solar Cells * *The present chapter is partly an excerpt from the book Thin-Film Silicon Solar Cells, edited by Arvind Shah and published in 2010 by the EPFL Press, Lausanne [1], with contributions by Horst Schade and Friedhelm Finger. For further specialized study and for details, the reader is referred to this book.,” in McEvoy’s Handbook of Photovoltaics, Elsevier, 2018, pp. 235–307.
  • [20] S. Wahid, M. Islam, Md. S. S. Rahman, and Md. K. Alam, “Transfer Matrix Formalism-Based Analytical Modeling and Performance Evaluation of Perovskite Solar Cells,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5034–5041, Dec. 2017, doi: 10.1109/TED.2017.2763091.
  • [21] G. F. Burkhard, E. T. Hoke, and M. Group, “Transfer Matrix Optical Modeling,” p. 6.
  • [22] A. Khalf, J. Gojanović, N. Ćirović, and S. Živanović, “Two different types of S-shaped J-V characteristics in organic solar cells,” Opt Quant Electron, vol. 52, no. 2, p. 121, Feb. 2020, doi: 10.1007/s11082-020-2236-7.
  • [23] KESNER, R.P. (2002) Memory neurobiology. In: RAMACHANDRAN, V.S. (ed.) Encyclopedia of the human brain, Vol. 2. San Diego: Academic Press, pp. 783-796.
  • [24] Victor Du John H, Jackuline Moni D*, Gracia D “A detailed review on Si, GaAs, and CIGS/CdTe based solar cells and efficiency comparison” PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 12/2020 doi:10.15199/48.2020.12.02
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a54cfed2-1af1-4b1f-97ce-df8901ccb244
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.