PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initial effects of experimental warming on temperatore,moisture and vegetation characteristics in an alpine meadow on the Qinghaj-Tibetan Plateau

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ongoing warming in the Qinghai-Tibetan Plateau leads to changes in ecosystem processes while the responses of soil and vegetation are not well understand. Thus, we used infrared radiators to carry out experimental warming from July 2010 to August 2011 in an alpine meadow on the Plateau (about 4630 m above sea level) to research the responses of environmental factors and vegetation characteristics to short-term warming (1 year). The experimental design was a block design consisting of five replications and included three treatment levels: control, T1 (130 W m-2) and T2 (150 W m-2). The results showed that air temperature at 20 cm height, surface temperature and soil temperature in the 0–100 cm layers increased with warming. The biggest differences of T1 (1.66°C) and T2 (2.34 °C) appeared on the surface and at 20 cm depth, whereas the biggest amplitudes of T1 (27.15%) and T2 (35.81%) all occurred at 100 cm depth. Soil moisture showed different trends with warming in different soil layers. In the 0–40 cm layers, soil moisture decreased with warming. The biggest differences (–2.97% for T1 and –2.73% for T2) and amplitudes (–18.07% for T1 and –16.64% for T2) all appeared at 10 cm depth. In the 60–100 cm layers, soil moisture increased with warming. The biggest differences (2.53% for T1 and 6.45% for T2) and amplitudes (11.39% for T1 and 29.05% for T2) all occurred at 100 cm depth. Relative to control, vegetation height and aboveground biomass increased significantly in T1 and T2 (P <0.05), while vegetation coverage had not significant differences in T1 and T2 (P> 0.05). In T1 and T2, the amplitudes were 30.67% and 30.19% for vegetation height, and 36.22% and 27.87% for vegetation aboveground biomass, and 12.89% and 4.42% for vegetation coverage, respectively. In the path analysis between environment and vegetation properties, vegetation was directly affected by soil moisture at 40 cm and 60 cm depths, whereas indirectly influenced by relative humidity at 20 cm height and soil temperature at 40 cm depth. This might be related to the downward movement of the soil moisture caused by warming.
Rocznik
Strony
491--509
Opis fizyczny
Bibliogr. 65 poz., il.
Twórcy
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Taiyuan Normal University, Taiyuan 030012, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Taiyuan Normal University, Taiyuan 030012, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Bibliografia
  • 1. Alwin D.F., Hauser R.M. 1975 – The decomposition of effects in path analysis – Am. Sociol. Rev. 40: 37–47.
  • 2. Anderson J.G., Wilmouth D.M., Smith J.B., Sayres D.S. 2012 – UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor – Science, 337: 835–839.
  • 3. Arft A.M., Walker M.D., Gurevitch J., Alatalo J.M., Bret-Harte M.S., Dale M., Diemer M., Gugerli F., Henry G.H.R., Jones M.H., Hollister R.D., Jónsdóttir I.S., Laine K., Lévesque E., Marion G.M., Molau U., Mølgaard P., Nordenhäll U., Raszhivin V., Robinson C.H., Starr G., Stenström A., Stenström M., Totland ø, Turner P.L.,Walker L.J., Webber P.J., Welker J.M., Wookey P.A. 1999 – Response patterns of tundra plant species to experimental warming:a meta-analysis of the International Tundra Experiment – Ecol. Monogr. 69: 491–512.
  • 4. Biasi C., Meyer H., Rusalimova O., Hämmerle R., Kaiser C., Baranyi C., Daims H., Lashchinsky N., Barsukov P., Richter A. 2008 – Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia – Plant Soil, 307: 191–205.
  • 5. Bronson D.R., Gower S.T., Tanner M., Linder S., Van Herk I. 2008 – Response of soil surface CO2 flux in a boreal forest to ecosystem warming – Global Change Biol. 14: 856–867.
  • 6. Cao G.M., Tang Y.H., Mo W.H., Wang Y.S., Li Y.N., Zhao X.Q. 2004 – Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau – Soil Biol. Biochem. 36: 237–243.
  • 7. Chapin F.S., Shaver G.R., Giblin A.E., Nadelhoffer K.J., Laundre J.A. 1995 - Responses of arctic tundra to experimental and observed changes in climate – Ecology, 76: 694–711.
  • 8. Danby R.K., Hik D.S. 2007 – Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline – Global Change Biol. 13: 437–451.
  • 9. de Boeck H.J., Lemmens C.M.H.M., Gielen B., Bossuyt H., Malchair S., Carnol M., Merckx R., Ceulemans R., Nijs I. 2007 – Combined effects of climate warming and plant diversity loss on above- and belowground grassland productivity – Environ. Exp. Bot. 60: 95–104.
  • 10. Dunne J.A., Saleska S.R., Fischer M.L., Harte J. 2004 – Integrating experimental and gradient methods in ecological climate change research – Ecology, 85: 904–916.
  • 11. Fang J.Y., Yang Y.H., Ma W.H., Mohammat A., Shen H.H. 2010 – Ecosystem carbon stocks and their changes in China’s grasslands - Sci. China Life Sci. 53: 757–765.
  • 12. Foley J.A., Kutzbach J.E., Coe M.T., Levis S. 1994 – Feedbacks between climate and boreal forests during the Holocene epoch – Nature, 371: 52–54.
  • 13. Goulden M.L., Wofsy S.C., Harden J.W., Trumbore S.E., Crill P.M., Gower S.T., Fries T., Daube B.C., Fan S.M., Sutton D.J., Bazzaz A., Munger J.W. 1998 – Sensitivity of boreal forest carbon balance to soil thaw – Science, 279: 214–217.
  • 14. Grabherr G., Gottfried M., Pauli H. 1994 - Climate effects on mountain plants – Nature, 369: 448.
  • 15. Hall C.A.S., Ekdahl C.A., Wartenberg D.E. 1975 – A fifteen-year record of biotic metabolism in the Northern Hemisphere – Nature, 255: 136–138.
  • 16. Hansen J., Sato M., Ruedy R. 2012 – Perception of climate change – P. Natl. Acad. Sci. USA, 109: 1–9.
  • 17. Harte J., Torn M.S., Chang F.R., Feifarek B., Kinzig A.P., Shaw R.S., Hen K. 1995 – Global warming and soil microclimate: results from a meadow-warming experiment – Ecol. App. 5: 132–150.
  • 18. Keeling C.D., Chin J.F.S., Whorf T.P. 1996 – Increased activity of northern vegetation inferred from atmospheric CO2 measurements - Nature, 382: 146–149.
  • 19. Klein J., Harte J., Zhao X.Q. 2005 – Dynamic and complex microclimate responses to warming and grazing manipulations – Global Change Biol. 11: 1440–1451.
  • 20. Kimball B.A. 2005 – Theory and performance of an infrared heater for ecosystem warming – Global Change Biol. 11: 2041–2056.
  • 21. Knorr W., Prentice I.C., House J.I., Holland E.A. 2005 – Long-term sensitivity of soil carbon turnover to warming – Nature, 433: 298–301.
  • 22. Kudo G., Suzuki S. 2003 – Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan – Oecologia, 135: 280–287.
  • 23. Kutzbach J., Bonan G., Foley J., Harrison S.P. 1996 – Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene – Nature, 384: 623–626.
  • 24. Li N., Wang G.X., Gao Y.H., Wang J.F. 2011-Warming effects on plant growth, soil nutrients, microbial biomass and soil enzymes activities of two alpine meadows in Tibetan plateau - Pol. J. Ecol. 59: 25–35.
  • 25. Li N., Wang G.X., Yang Y., Gao Y.H., Liu G.S. 2011 – Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau – Soil Biol. Biochem. 43: 942–953.
  • 26. Li N., Wang G.X., Yang Y., Gao Y.H., Liu L.A., Liu G.S. 2011 – Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau – Acta Ecol. Sin. 31: 895–905 (in Chinese, English summary).
  • 27. Li Y.N., Zhao L., Zhao X.Q., Zhou H.K. 2004 – Effects of a 5-years mimic Temperature Increase to the structure and productivity of Kobresia humilis meadow – Acta Agr. Sin. 12: 236–239 (in Chinese, English summary).
  • 28. Liu J., Xu X.F., Luo H. 2012 – An empirical research on the impacts of extreme weather and climate events on agricultural economic output in China – Sci. Sin. Terr. 42: 1076–1082 (in Chinese, English summary).
  • 29. Liu X.D., Chen B.D. 2000 – Climatic warming in the Tibetan Plateau during recent decades - Int. J. Climatol. 20: 1729–1742.
  • 30. Luo Y.Q., Melillo J., Niu S.L., Beier C., Clark J.S., Classen A.T., Davidson E., Dukes J.S., Evans R.D., Field C.B., Czimczik C.I., Keller M., Kimball B.A., Kueppers L.M., Norby R.J., Pelini S.L., Pendall E., Rastetter E., Six J., Smith M., Tjoelker M.G., Torn M.S. 2011 – Coordinated approaches to quantify long-term ecosystem dynamics in response to global change – Global Change Biol. 17: 843–854.
  • 31. Melillo J.M., McGuire A.D., Kicklighter D.W., Moore B.III., Vorosmarty C.J., Schloss A.L. 1993 – Global climate change and terrestrial net primary production – Nature, 363: 234–240.
  • 32. Niinistö S.M., Silvola J., Kellomäki S. 2004 – Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming – Global Change Biol. 10: 1363–1376.
  • 33. Niu S.L., Han X.G., Ma K.P., Wan S.Q. 2007 – Field facilities in global warming and terrestrial ecosystem research – J. Plant Ecol. 31: 262–271 (in Chinese, English summary).
  • 34. Nijs I., Kockelbergh F., Teughels H., Blum H., Hendrey G., Impens I. 1996 - Free Air Temperature Increase (FATI): a new tool to study global warming effects on plants in the field – Plant Cell Environ. 19: 495–502.
  • 35. Noormets A., Chen J.Q., Bridgham S.D., Weltzin J.F., Pastor J., Dewey B., LeMoine J. 2004 – The effects of infrared loading and water table on soil energy fluxes in northern peatlands – Ecosystems, 7: 573–582.
  • 36. Oberbauer S.F., Tweedie C.E., Welker J.M., Fahnestock J.T., Henry G.H.R., Webber P.J., Hollister R.D., Walker M.D., Kuchy A., Elmore1 E., Starr G. 2007 - Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients – Ecol. Monogr. 77: 221–238.
  • 37. Oechel W.C., Hastings S.J., Vourlitis G., Jenkins M., Riechers G., Grulke N. 1993 – Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source – Nature, 361: 520–523.
  • 38. Oreskes N. 2004 – The scientific consensus on climate change – Science, 306: 1686.
  • 39. Peterson T.C., Stott P.A., Herring S. 2012 - Explaining extreme events of 2011 from a climate perspective – Bull. Amer. Meteor. Soc. 93: 1041–1067.
  • 40. Piao S.L., Fang J.Y., Ji W., Guo Q.H., Ke J.H., Tao S. 2004 – Variation in a satellitebased vegetation index in relation to climate in China – J. Veg. Sci. 15: 219–226.
  • 41. Qi W.W., Niu H.S., Wang S.P., Liu Y.J., Zhang L.R. 2012 – Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau – Acta Ecol. Sin. 32: 1713–1722 (in Chinese, English summary).
  • 42. Rowlands D.J., Frame D.J., Ackerley D., Aina T., Booth B.B.B., Christensen C., Collins M., Faull N., Forest C.E., Grandey B.S., Gr yspeerdt E., Highwood E.J., Ingram W.J., Knight S., Lopez A., Massey N., McNamara F., Meinshausen N., Piani C., Rosier S.M., Sanderson B.M., Smith L.A., Stone D.A., Thurston M., Yamazaki K., Hiro Yamazaki Y., Allen M.R. 2012 - Broad range of 2050 warming from an observationally constrained large climate model ensemble – Nature, 5: 256–260.
  • 43. Schindlbacher A., Zechmeister-boltenstern S., Jandl R. 2009 – Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? – Global Change Biol. 15: 901–913.
  • 44. Shaver G.R., Canadell J., Chapin F.S.III., Gurevitch J., Harte J., Henry G., Ineson P., Jonasson S., Melillo J., Pitelka L., Rustad L. 2000 – Global warming and terrestrial ecosystems: a conceptual framework for analysis – BioScience, 50: 871–882.
  • 45. Shi F.S., Chen H., Chen H.F., Wu Y., Wu N. 2012 – The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau – Ecol. Res. 27: 725–733.
  • 46. Shi F.S., Wu N., Luo P. 2008 – Effect of temperature enhancement on community structure and biomass of subalpine meadow in Northwestern Sichuan – Acta Ecol. Sin. 28: 5286–5293 (in Chinese, English summary).
  • 47. Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Townsend Peterson A., Phillips O.L., Williams S.E. 2004 – Extinction risk from climate change – Nature, 427: 145–148.
  • 48. Wan S., Luo Y., Wallace L.L. 2002 – Changes in microclimate induced by experimental warming and clipping in tallgrass prairie – Global Change Biol. 8: 754–768.
  • 49. Wan S.Q., Hui D.F., Wallace L., Luo Y.Q. 2005 – Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie – Global Biogeochem. Cy. 19: GB2014.
  • 50. Wang M., Li Y., Huang R.Q., Li Y.L. 2005 - The effects of climate warming on the alpine vegetation of the Qinghai-Tibetan Plateau hinterland – Acta Ecol. Sin. 25: 1275–1281 (in Chinese, English summary).
  • 51. Wang S.P., Duan J.C., Xu G.P., Wang Y.F., Zhang Z.H., Rui Y.C., Luo C.Y., Xu B.R.B.Y., Zhu X.X., Chang X.F., Cui X.Y., Niu H.S., Zhao X.Q., Wang W.Y. 2012 – Effects of warming and grazing on soil N availability, species composition and ANPP in alpine meadow – Ecology, 93: 2365–2376.
  • 52. Weltzin J.F., Pastor J., Harth C., Bridgham S.D., Updegraff K., Chapin C.T. 2000 – Response of bog and fen plant communities to warming and water-table manipulations - Ecology, 81: 3464–3478.
  • 53. Xia J.Y., Chen S.P., Wan S.Q. 2010 – Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe – Sci. Total Environ. 408: 2807–2816.
  • 54. Xia J.Y., Wan S.Q. 2012 – The effects of warming-shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland – Plos One, 7: e32088.
  • 55. Xiong P., Xu Z.F., Lin B., Liu Q. 2010 – Short-term response of winter soil respiration to simulated warming in a Pinus armandii plantation in the upper reaches of the Minjiang River, China – J. Plant Ecol. 34: 1369–1376 (in Chinese, English summary).
  • 56. Xu M.H., Xue X. 2013 – Correlation among vegetation characteristics, temperature and moisture of alpine meadow in the Qinghai-Tibetan Plateau – Acta Ecol. Sin. 33: 3158–3168 (in Chinese, English summary).
  • 57. Xue X., Luo Y.Q., Zhou X.H., Sherry R., Jia X.H. 2011 – Climate warming increases soil erosion, carbon and nitrogen loss with biofuel feedstock harvest in tallgrass prairie – Global Change Biol. 3: 198–207.
  • 58. Yang M.X., Yao T.D., Gou X.H., Koike T., He Y. 2003 – The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau – J. Asian Earth Sci. 21: 457–465.
  • 59. Yang Y.H., Piao S.L. 2006 – Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau – J. Plant Ecol. 30: 1–8 (in Chinese, English summary).
  • 60. Yin H.J., Lai T., Cheng X.Y., Jiang X.M., Liu Q. 2008 – Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China – J. Plant Ecol. 32: 1072–1083 (in Chinese, English summary).
  • 61. Yu X.F., Zhou W.J., Liu Z., Kang Z.H. 2011 – Different patterns of changes in the Asian summer and winter monsoons on the eastern Tibetan Plateau during the Holocene - The Holocene, 21: 1031–1036.
  • 62. Zhang F.W., Li Y.N., Cao G.M., Wang S.P., Zhao X.Q., Du M.Y., Wang Q.X. 2011—Response of alpine plant community to simulated climate change: two-year results of reciprocal translocation experiment (Tibetan plateau) - Pol. J. Ecol. 59: 741–751.
  • 63. Zhang Y.Q., Welker J.M. 1996 – Tibetan alpine tundra response to simulated changes in climate: aboveground biomass and community responses – Arct. Antarct. Alp. Res. 28: 203–209.
  • 64. Zhou H.K., Zhou X.M., Zhao X.Q. 2000 – A preliminary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow – Acta Phy. Sin. 24: 547–553 (in Chinese, English summary).
  • 65. Zhou X.Q., Chen C.R., Wang Y.F, Xu Z.H., Han H.Y., Li L.H., Wan S.Q. 2013 – Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland – Sci. Total Environ. 444: 552–558.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a54a4cc6-d60c-4f52-b667-59a99ae01ec0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.