PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finding Optimal Frequency and Spatial Filters Accompanying Blind Signal Separation of EEG Data for SSVEP-based BCI

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brain-computer interface (BCI) is a device which allows paralyzed people to navigate a robot, prosthesis or wheelchair using only their own brains reactions. By creating a direct communication pathway between the human brain and a machine, without muscles contractions or activity from within the peripheral nervous system, BCI makes mapping persons intentions onto directive signals possible. One of the most commonly utilized phenomena in BCI is steady-state visually evoked potentials (SSVEP). If subject focuses attention on the flashing stimulus (with specified frequency) presented on the computer screen, a signal of the same frequency will appear in his or hers visual cortex and from there it can be measured. When there is more than one stimulus on the screen (each flashing with a different frequency) then based on the outcomes of the signal analysis we can predict at which of these objects (e.g., rectangles) subject was/is looking at that particular moment. Proper preprocessing steps have taken place in order to obtain maximally accurate stimuli recognition (as the specific frequency). In the current article, we compared various preprocessing and processing methods for BCI purposes. Combinations of spatial and temporal filtration methods and the proceeding blind source separation (BSS) were evaluated in terms of the resulting decoding accuracy. Canonical-correlation analysis (CCA) to signals classification was used.
Słowa kluczowe
Twórcy
autor
  • Section of Logic and Cognitive Science, Institute of Psychology, Adam Mickiewicz University in Poznan, Poland
autor
  • Section of Logic and Cognitive Science, Institute of Psychology, Adam Mickiewicz University in Poznan, Poland
  • Division of Metrology and Optoelectronics, Institute of Electrical Engineering and Electronics, Poznan University of Technology, Poznan, Poland
Bibliografia
  • [1] P. Comon, “Independent component analysis, A new concept?” Signal Processing, vol. 36, no. 3, pp. 287–314, 1994.
  • [2] T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, I. Iragui, and T. J. Sejnowski, “Removing Electroencephalographic aretfacts by blind source seperation,” Psychophysiology, vol. 37, no. 2, pp. 163–178, 2000.
  • [3] F. Piccione, F. Giorgi, P. Tonin, K. Priftis, S. Giove, S. Silvoni, G. Palmas, and F. Beverina, “P300-based brain computer interface: Reliability and performance in healthy and paralysed participants,” Clinical Neurophysiology, vol. 117, no. 3, pp. 531–537, 2006.
  • [4] Y. Wang, Z. Zhang, X. Gao, and S. Gao, “Lead selection for SSVEPbased brain-computer interface.” in Proceedings of the 26th Annual International Conference of the IEEE EMBS, vol. 6, no. April 2016, San Francisco, CA, USA, 2004, pp. 4507–4510.
  • [5] H. Bakardjian, T. Tanaka, and A. Cichocki, “Optimization of ssvep brain responses with application to eight-command brain–computer interface”, Neuroscience letters, vol. 469, no. 1, pp. 34–38, 2010.
  • [6] M. Jukiewicz, M. Buchwald, and A. Cysewska-Sobusiak, “Usuwanie artefaktów z sygnałów sterujacych interfejsem mózg-komputer”, Poznan University of Technology Academic Journals. Electrical Engineering, no. 89, pp. 195–204, 2017.
  • [7] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications”, Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.
  • [8] J.-F. Cardoso, “Infomax and maximum likelihood for blind source separation”, IEEE Signal processing letters, vol. 4, no. 4, pp. 112–114, 1997.
  • [9] T.-W. Lee, M. Girolami, and T. J. Sejnowski, “Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources,” Neural computation, vol. 11, no. 2, pp. 417–441, 1999.
  • [10] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully online multicommand brain-computer interface with visual neurofeedback using ssvep paradigm”, Computational intelligence and neuroscience, vol. 2007, 2007.
  • [11] M. Kolodziej, A. Majkowski, and R. J. Rak, “Automatic detection of ssvep using independent component analysis,” in Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2016. IEEE, 2016, pp. 196–201.
  • [12] A. Kachenoura, L. Albera, L. Senhadji, and P. Comon, “ICA: A potential tool for BCI systems,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 57–68, 2008.
  • [13] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter selection for EEG-based communication,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 3, pp. 386–394, 1997.
  • [14] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, “Eegbased communication: improved accuracy by response verification”, IEEE transactions on Rehabilitation Engineering, vol. 6, no. 3, pp. 326–333, 1998.
  • [15] H. Jasper, “Report of the committee on methods of clinical examination in electroencephalography”, Electroencephalogr Clin Neurophysiol, vol. 10, pp. 370–375, 1958.
  • [16] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. Hämäläinen, “MEG and EEG data analysis with MNE-Python”, Frontiers in Neuroscience, vol. 7, pp. 1–13, 2013.
  • [17] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, and M. S. Hämäläinen, “MNE software for processing MEG and EEG data”, NeuroImage, vol. 86, pp. 446–460, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2013.10.027
  • [18] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on canonical correlation analysis for ssvep-based bcis”, Biomedical Engineering, IEEE Transactions on, vol. 53, no. 12, pp. 2610–2614, 2006.
  • [19] G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, “An online multi-channel ssvep-based brain–computer interface using a canonical correlation analysis method”, Journal of neural engineering, vol. 6, no. 4, p. 046002, 2009.
  • [20] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency recognition in ssvep-based bci using multiset canonical correlation analysis”, International journal of neural systems, vol. 24, no. 04, p. 1450013, 2014.
  • [21] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on canonical correlation analysis for ssvep-based bcis”, IEEE transactions on biomedical engineering, vol. 54, no. 6, pp. 1172–1176, 2007.
  • [22] S.-i. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for blind signal separation”, in Advances in neural information processing systems, 1996, pp. 757–763.
  • [23] A. Cichocki and S.-i. Amari, Adaptive blind signal and image processing: learning algorithms and applications. John Wiley & Sons, 2002, vol. 1.
  • [24] S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee, “Blind source separation and independent component analysis: A review”, Neural Information Processing-Letters and Reviews, vol. 6, no. 1, pp. 1–57, 2005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a542120b-4821-4fe1-a0b9-d9cb54e1ac2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.