PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of Microwave-Assisted Leaching on the Treatment of Electric Arc Furnace Dusts (EAFD)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, laboratory-scale experiments were carried out to investigate the effects of microwave-assisted alkaline leaching on the treatment of electric arc furnace dusts to recover zinc and lead. Microwave treatment is a new innovative technology in waste treatment and now is an attractive advanced inter-disciplinary field and also environmental friendly. The highest zinc extraction, 50.3% in 60 minutes using 5 M NaOH at 750 W and L:S ratio 20, and lead extraction up to 92.84% was achieved in these same conditions but in 30 minutes. Compared with conventional leaching, the top extraction rate using MW-assisted leaching was higher by 16% (Zn) and 26% (Pb). Zinc presents in the flue dust in the form of franklinite (ZnFe2 O4 ), its leaching in sodium hydroxide does not occur under the examined conditions, because it is enclosed in a matrix of iron.
Słowa kluczowe
Twórcy
  • Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling, Technical University of Kosice, Letna 9, 042 00, Kosice, Slovakia
autor
  • Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling, Technical University of Kosice, Letna 9, 042 00, Kosice, Slovakia
autor
  • Research and Development Center of Zeleziarne Podbrezova, S.R.O., Kolkaren 35, 97681 Podbrezova, Slovakia
autor
  • Istanbul Technical University, Metallurgical and Materials Eng. Dept., 34469, Istanbul, Turkey
autor
  • Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling, Technical University of Kosice, Letna 9, 042 00, Kosice, Slovakia
Bibliografia
  • [1] https://www.worldsteel.org/media-centre/press-releases/2018/World-crude-steel-output increases-by-5.3--in-2017.html, accessed 09.10.2018
  • [2] T. Havlik, F. Kukurugya, D. Orac, L. Parilak, World Metall. - ERZMETALL. 65 (1), 48-56 (2012).
  • [3] http://www.nwcpo.ie/forms/EWC_code_book.pdf., accessed 09.11.2018.
  • [4] F. Kukurugya, T. Vindt, T. Havlík, Hydrometallurgy 154, 20-32 (2015).
  • [5] G. Maruskinova, L. Parilak, V. Chomič, S. Turna, L. Brizekova, J. Havran, M. Roncak, in: Mater. recyklacia Priem. Odpad. Tale 53-59 (2018).
  • [6] Z. Sedlakova, T. Havlik, Acta Metall. Slovaca 12, 209-218 (2006).
  • [7] M. H. Morcali, O. Yucel, A. Aydin, J. Min. Metall. Sect. B Metall. 48, 173-184 (2012).
  • [8] Z. Sedlakova, H. Jalkanen, in: Espoo, Finland 41 (2005).
  • [9] Z. Hoang-Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, T. Havlik, J. Hazard. Mater. 192 (3), 1100-1107 (2011).
  • [10] M. Ranitovic, Z. Kamberovic, M. Korac, M. Gavrilovski, H. Issa, Z. Andic, Sci. Sinter 46 (1), 83-93 (2014).
  • [11] T. Havlik, G. Maruskinova, A. Miskufova, Arch Metall Mater 63 (2), 653-658 (2018).
  • [12] Z. Sedlakova, D. Orac, T. Havlik, Acta Metall. Slovaca. 12 (1), 338-345 (2006).
  • [13] F. Carranza, R. Romero, A. Mazuelos, N. Iglesias, J. Environ. Manage. 165, 175-183 (2016).
  • [14] A. J. B. Dutra, P. R. P. Paiva, L. M. Tavares, Miner. Eng. 19 (5), (2006).
  • [15] M. Al-Harahsheh, S. W. Kingman, L. Al-Makhadmah, I. E. Hamilton, J. Hazard. Mater. 274, 87-97 (2014).
  • [16] J. Veres, M. Lovas, S. Jakabsky, V. Sepelak, S. Hredzak, Hydrometallurgy 129-130, 67-73 (2012).
  • [17] I. Mikhailov, S. Komarov, V. Levina, A. Gusev, J. P. Issi, D. Kuznetzov, J. Hazard. Mater. 321, 557-565 (2017).
  • [18] M. Laubertova, T. Havlik, B. Hluchanova, in: Mod. trends Process. Second. raw Mater. non-ferrous Met. Kosice 67-71 (2008).
  • [19] M. Al-Harahsheh, S. W. Kingman, Hydrometallurgy 73 (3-4), 189-203 (2004).
  • [20] M. Al-Harahsheh, S. W. Kingman, C. Somerfield, F. Ababneh, Anal. Chim. Acta 638, 101-105 (2009).
  • [21] I. Znamenackova, M. Lovas, S. Hredzak, S. Dolinska, in: SGEM Albena 965-973 (2014).
  • [22] X. Sun, J.-Y. Hwang, X. Huang, JOM 60 (10), 35-39 (2008).
  • [23] T. Havlik, M. Popovicova, M. Ukasik, Metall 56 (3), 131-134 (2002).
  • [24] E. Krakovska, H. M. Kuss, Rozklady v analytickej chemii. Kosice (2001).
  • [25] M. Al-Harahsheh, S. W. Kingman, I. Hamilton, J. Anal. Appl.Pyrol. 128, 168-175 (2017).
  • [26] C. W. Bale, E. Belisle, P. Chartrand, et al., Calphad. Comput. Coupling Phase Diagrams Thermochem. 54, 35-53 (2016).
  • [27] D. K. Xia, C. A. Pickles, Miner. Eng. 13 (1), 79-94 (2000).
  • [28] S. Langova, D. Matysek, Hydrometallurgy 101, 171-173 (2010).
  • [29] G. Orhan, Hydrometallurgy 78, 236-245 (2005).
  • [30] P. E. Tsakiridis, P. Oustadakis, A. Katsiapi, S. Agatzini-Leonardou, J. Hazard. Mater. 179, 1-3 (2010).
  • [31] I. Kobialkova, T. Havlik, WASTE - Second. Raw Mater. 5, 4-7 (2013).
  • [32] A. Stefanova, J. Aromaa, O. A. Forsen, Physicochem. Probl. Miner. Process. 46, 37-46 (2013).
Uwagi
EN
1. This work was supported by the Slovak Research and Development Agency under contract [APVV-14-0591]; and the Ministry for Education of the Slovak Republic under VEGA grant [1/0442/17]; and Research and Development Center of Zeleziarne Podbrezova, s.r.o. in framework of project LSPO. This article has been checked for spelling and grammar by Andrew J. Billingham.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a54048e9-9ad8-407c-99d0-feafa21d64e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.