Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Surface property plays a very important role on coal hydrophobicity which determines flotation behavior of fine coals. However, coal spontaneous combustion makes coal suffer both oxidation and high temperature heating processes. Coals from the outside of coal piles primarily suffer oxidation (or combustion process) while coals from the inside of coal piles primarily suffer high temperature heating process. It is necessary to investigate the changes in surface properties of coal before and after high temperature heating process. In this investigation, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), surface area (BET) and contact angle measurements were used to indicate the changes in surface properties of anthracite coal before and after high temperature heating process. Throughout this study, surface properties of coal changed significantly after high temperature heating process. Meanwhile, coal hydrophobicity can be also reduced after high temperature heating.
Słowa kluczowe
Rocznik
Tom
Strony
205--212
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
Bibliografia
- 1. BOLAT E., SAGLAM S., PISKIN S., 1998. The effect of oxidation on the flotation properties of a Turkish bituminous coal. Fuel Processing Technology, 55(2), 101-105.
- 2. CINAR M., 2009. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel Processing Technology, 90(10), 1300-1304.
- 3. DESIMONI E., CASELLA G. I., SALVI A. M., 1992. XPS/XAES study of carbon fibres during thermal annealing under UHV conditions. Carbon, 30(4), 521-526.
- 4. FUERSTENAU D. W., DIAO J., 1992. Characterization of coal oxidation and coal wetting behavior by film flotation. Coal Preparation, 10(1-4), 1-17.
- 5. FIEDLER R., BENDLER D., 1992. ESCA investigations on Schleenhain lignite lithotypes and the hydrogenation residues. Fuel, 71(4), 381-388.
- 6. GRZYBEK T., PIETRZAK R., WACHOWSKA H., 2006. The influence of oxidation with air in comparison to oxygen in sodium carbonate solution on the surface composition of coals of different ranks. Fuel, 85(7): 1016-1023.
- 7. GRZYBEK T., PIETRZAK R., WACHOWSKA H., 2002. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content. Fuel Processing Technology, 77: 1-7.
- 8. HAO S., WEN J., YU X., CHU W., 2013. Effect of the surface oxygen groups on methane adsorption on coals, Applied Surface Science, 264, 433–442.
- 9. JIA R., HARRIS G. H., FUERSTENAU D. W., 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. International Journal of Mineral Processing, 58(1), 99-118.
- 10. KUTCHKO B. G., KIM A. G., 2006. Fly ash characterization by SEM–EDS. Fuel, 85(17, 2537-2544.
- 11. KOZŁOWSKI M., PIETRZAK R., WACHOWSKA H., YPERMAN J., 2002. AP–TPR study of sulphur in coals subjected to mild oxidation. Part 1. Demineralised coals. Fuel, 81(18): 2397-2405.
- 12. NIEWIADOMSKI M., HUPKA J., BOKOTKO R., MILLER J. D., 1999. Recovery of coke fines from fly ash by air sparged hydrocyclone flotation. Fuel, 78(2), 161-168.
- 13. PIETRZAK R., WACHOWSKA H., 2004. Thermal analysis of oxidised coals. Thermochimica Acta,, 419(1): 247-251.
- 14. PIETRZAK R., GRZYBEK T., WACHOWSKA H., 2007. XPS study of pyrite-free coals subjected to different oxidizing agents. Fuel, 86(16): 2616-2624.
- 15. PIETRZAK R., WACHOWSKA H., 2003. Low temperature oxidation of coals of different rank and different sulphur content. Fuel, 82(6): 705-713.
- 16. PILAWA B., WIĘCKOWSKI A. B., PIETRZAK R., WACHOWSKA H., 2002. Oxidation of demineralized coal and coal free of pyrite examined by EPR spectroscopy. Fuel, 81(15): 1925-1931.
- 17. SCHAFER H. N. S., 1979. Pyrolysis of brown coals. 1. Decomposition of acid groups in coals containing carboxyl groups in the acid and cation forms. Fuel, 58(9), 667-672.
- 18. TAO D., JOHNSON S., PAREKH B. K., 2002. A flotation study of refuse pond coal slurry. Fuel Processing Technology, 76(3), 201-210.
- 19. WU M. M., ROBBINS G. A., WINSCHEL R. A., BURKE F. P., 1988. Low-temperature coal weathering: its chemical nature and effects on coal properties. Energy & Fuels, 2(2), 150-157.
- 20. XIA W., YANG J., ZHAO Y., ZHU B., WANG Y., 2012. Improving floatability of Taixi anthracite coal of mild oxidation by grinding. Physicochemical Problem of Mineral Processing, 48 (2), 393-401.
- 21. XIA W., YANG J., LIANG C., 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology, 237, 1-8.
- 22. XIA W., YANG J., 2013. Reverse flotation of Taixi oxidized coal. Energy & Fuels, 27(12), 7324-7329.
- 23. XIA W., XIE G., 2014. Changes in the hydrophobicity of anthracite coals before and after high temperature heating process. Powder Technology, 264, 31-35.
- 24. XIA W., XIE G., PAN D., YANG, J., 2014. Effects of cooling conditions on surface properties of heated coals. Industrial & Engineering Chemistry Research, 53 (26), 10810-10813.
- 25. ZHOU J. H., SUI Z. J., ZHU J., LI P., CHEN D., DAI Y. C., YUAN W. K., 2007. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon, 45(4), 785-796
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a53ce32f-f13a-478e-a94f-0693085764bd