PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From waste to value: recovering critical raw materials from urban mines in the European Union and United States

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Od odpadu do wartości: odzyskiwanie surowców krytycznych z miejskich kopalni w Unii Europejskiej i Stanach Zjednoczonych
Języki publikacji
EN
Abstrakty
EN
Municipal waste is a global issue and they are generated in all countries around the world. Both in the European Union and the United States, a common method of non-recyclable waste utilization is thermal incineration with energy recovery. As a result of this treatment, residual waste like bottom ash, air pollution control residues and fly ashes are generated. This research shows that residues from waste incineration can be a potential source of critical raw materials. The analysis of the available literature prove that the residues of municipal waste incinerators contain most of the elements important for the US and EU economies. Material flow analysis has shown that each year, the content of elemental copper in residues may be 29,000 Mg (USA) and 51,000 Mg (EU), and the amount of rare earth elements in residues exceeds their mining in the EU. In the case of other elements, their content may exceed their extraction by even over 300%. The recovery of elements is difficult due to their encapsulation in the aggregate matrix. The heterogeneous nature of residues and the many interactions between different components and incineration techniques can make the process of recovery complicated. Recovery plants should process as much of the residues as possible to make their recovery profitable. However, policy makers from the EU and the US are introducing new legal regulations to increase the availability of critical raw materials. In the EU, new regulations are planned that will require at least 15% of the annual consumption of critical raw materials to come from recycling. Therefore, innovative technologies for recovering critical raw materials from waste have a chance to receive subsidies for research and development.
PL
Odpady komunalne stanowią globalny problem i są wytwarzane we wszystkich krajach na całym świecie. W Unii Europejskiej i Stanach Zjednoczonych powszechną metodą utylizacji odpadów nienadających się do procesów recyklingu jest ich termiczne spalanie z odzyskiem energii. W wyniku tego procesu generowane są pozostałości procesowe, takie jak popioły denne, stałe pozostałości z oczyszczania spalin i popioły lotne. Badania wykazały, że te odpady mogą być potencjalnym źródłem surowców krytycznych. Analiza dostępnej literatury dowodzi, że pozostałości z instalacji termicznego przekształcania odpadów komunalnych zawierają większość surowców krytycznych ważnych dla gospodarki USA i UE. Analiza przepływu materiałów wykazała, że zawartość miedzi pierwiastkowej w pozostałościach może wynosić rocznie 29 000 Mg (USA) i 51 000 Mg (UE), a ilość metali ziem rzadkich w pozostałościach przewyższa ich wydobycie w UE. W przypadku innych pierwiastków, ich zawartość może przewyższać wydobycie nawet o ponad 300%. Odzyskiwanie pierwiastków jest jednak trudne ze względu na ich agregację. Heterogeniczna natura pozostałości i liczne interakcje między różnymi składnikami oraz technikami spalania mogą komplikować proces odzysku. Instalacje specjalizujące się w przetwarzaniu pozostałości muszą przetwarzać jak najwięcej odpadów aby ich odzysk był opłacalny. Jednak politycy z UE i USA wprowadzają nowe regulacje prawne w celu zwiększenia dostępności surowców krytycznych. W UE planowane są nowe przepisy wymagające, aby minimum 15% rocznego zużycia surowców krytycznych pochodziło z recyklingu. Dlatego innowacyjne technologie odzysku surowców krytycznych z odpadów mają szanse na uzyskanie dotacji na badania i rozwój.
Twórcy
  • Krakowski Holding Komunalny Spółka Akcyjna w Krakowie; AGH University of Kraków, Poland
  • AGH University of Kraków, Poland
  • University of Silesia in Katowice, Poland
  • Indiana University, Indiana Geological and Water Survey, United States
Bibliografia
  • [1] Al-Ghouti et al. 2020 – Al-Ghouti, M., Khan, M., Nasser, M. and Saad, K. 2020. Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources. Environmental Technology and Innovation 21, DOI: 10.1016/j.eti.2020.101267.
  • [2] Balaram, V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers 10(4), DOI: 10.1016/j.gsf.2018.12.005.
  • [3] Bielowicz, B. 2021. Selected critical raw materials in waste from coal gasification in poland. Energies 14(23), DOI: 10.3390/en14238071.
  • [4] Blasenbauer et al. 2020 – Blasenbauer, D., Huber, F. and Leder, J. 2020. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Management. 102, pp. 868-883, DOI: 10.1016/j.wasman.2019.11.031.
  • [5] Bogush et al. 2015 – Bogush, A., Stegemann, I., Wood, I. and Amitava, R. 2015. Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities. Waste Management 36, pp. 119-129, DOI: 10.1016/j.wasman.2014.11.017.
  • [6] Bradford et al. 2018 – Bradford, A. Broude, S. and Truelove, A. 2018. Trash in America. [Online:] https://frontiergroup.org/resources/trash-america [Accessed: 2023-01-17].
  • [7] Brown, T. 2020. World mineral production 2015-2019. British Geological Survey.
  • [8] Brunner, P.H. and Rechberger, H. 2016. Handbook of material flow analysis : for environmental, resource, and waste engineers. CRC Press, DOI: 10.1201/9781315313450-4.
  • [9] Bruno et al. 2021 – Bruno, M. Abis, M. Kuchta, K. Simon, F. Gronholm, R. Hoppe, M. Fiore, S. 2021. Material flow, economic and environmental assessment of municipal solid waste incineration bottom ash recycling potential in Europe. Journal of Cleaner Production 317, DOI: 10.1016/j.jclepro.2021.128511.
  • [10] Cen et al. 2021 – Cen, P., Bian, X., Liu, Z., Gu, M. and Wu, W. 2021. Extraction of rare earths from bastnaesite concentrates: A critical review and perspective for the future. Minerals Engineering 171, DOI: 10.1016/J.MINENG.2021.107081.
  • [11] Chen et al. 2020 – Chen, H., Lin, H., Zhang, P. and Yu, L. 2020. Immobilisation of heavy metals in hazardous waste incineration residue using SiO2-Al2O3-Fe2O3-CaO glass-ceramic. Ceramics International. pp. 1-10, DOI: 10.1016/j.ceramint.2020.11.213.
  • [12] Code US 1976. Public Law 94-409 94th Congress An Act, (1), pp. 1023-1024.
  • [13] DARPA 2021. Looks to Microbes to Process Rare Earth Elements. US Department of Defense. [Online:] https://www.defense.gov/News/News-Stories/Article/Article/2768268/darpa-looks-to-microbes-to-process-rare-earth-elements/ [Accessed: 2023-01-16].
  • [14] DOE 2021. Department of Energy. DOE Awards $19 Million for Initiatives to Produce Rare Earth Elements and Critical Minerals. [Online:] https://www.energy.gov/articles/doe-awards-19-million-initiatives-produce-rare-earth-elements-and-critical-minerals [Accessed: 2023-01-13].
  • [15] Donahue, M. 2018. Waste incinertion: a dirty secret in how states define renewable energy acknowledgements. [Online:] https://ilsr.org/waste-incineration-renewable-energy/ [Accessed: 2023-01-13].
  • [16] Dou et al. 2017 – Dou, X., Ren, F., Nguyen, M. and Aham, A. 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews 79, pp. 24-38, DOI: 10.1016/j.rser.2017.05.044.
  • [17] Drobniak, A. and Mastalerz, M. 2022. Rare Earth Elements: A brief overview. Indiana Journal of Earth Sciences 4, DOI: 10.14434/ijes.v4i1.33628.
  • [18] Deng et al. 2022 – Deng, B., Wang, X., Luong, D., Carter, R., Wang, Z., Tomson, M. and Tour, J. 2022. Rare earth elements from waste. Science Advances 8(6), DOI: 10.1126/sciadv.abm3132.
  • [19] Elbashier et al. 2021 – Elbashier, E., Mussa, A., Hafiz, M. and Hawari, A. 2021. Recovery of rare earth elements from waste streams using membrane processes: An overview. Hydrometallurgy 204, DOI: 10.1016/j.hydromet.2021.105706.
  • [20] Eswaraiah et al. 2008 – Eswaraiah, C., Kavitha, T. and Vidyasagar, S. 2008. Classification of metals and plastics from printed circuit boards (PCB) using air classifier. Chemical Engineering and Processing: Process Intensification 47(4), pp. 565-576, DOI: 10.1016/j.cep.2006.11.010.
  • [21] EPA 2020. Advancing Sustainable Materials Management: Facts and Figures. Environmental Protection Agency. [Online:] https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management [Accessed: 2023-01-13].
  • [22] EPAa 2022. Municipal Solid Waste Landfills. Environmental Protection Agency. [Online:] https://www.epa.gov/landfills/municipal-solid-waste-landfills [Accessed: 2023-01-13].
  • [23] EPAb 2022. National Overview: Facts and Figures on Materials, Wastes and Recycling. Environmental Protection Agency. [Online:] https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials [Accessed: 2023-03-01].
  • [24] EPA 2023. Energy Recovery from the Combustion of Municipal Solid Waste (MSW). Environmental Protection Agency. [Online:] https://www.epa.gov/smm/energy-recovery-combustion-municipal-solid-waste-msw [Accessed: 2023-01-13].
  • [25] EC 2020. Study on the EU’s list of Critical Raw Materials, Factsheets on Critical Raw Materials. European Commission, DOI: 10.2873/11619.
  • [26] EPC 2008. Directive 2008/98/CE of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. European Parliament and Council. Official Journal of European Union, L312, pp. 1-59. [Online:] http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:312:0003:01:ES:HTML [Accessed: 2023-01-13].
  • [27] EPC 2023. Establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020. European Parliament and a Council.
  • [28] Eurostat 2021. Data browser - Municipal Solid Waste Management. Eurostat. [Online:] https://ec.europa.eu/eurostat/databrowser/view/tec00115/default/table?lang=en [Accessed: 2023-01-13].
  • [29] Eurostat 2017. Municipal waste statistics. pp. 1-6. [Online:] http://ec.europa.eu/eurostat/statistics-explained/ [Accessed: 2023-01-14].
  • [30] Faramarzi et al. 2020 – Faramarzi, M.A., Mogharabi-Manzari, M. and Brandl, H. 2020. Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 191, DOI: 10.1016/J.HYDROMET. 2019.105228.
  • [31] Funari et al. 2015 – Funari, V., Braga, R. and Bokhari, S. 2015. Solid residues from Italian municipal solid waste incinerators: A source for “critical” raw materials. Waste Management 45, pp. 206-216, DOI: 10.1016/j.wasman.2014.11.005.
  • [32] Funari et al. 2016 – Funari, V., Bokhari, S. and Viglio, L. 2016. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. Journal of Hazardous Materials 301, pp. 471-479, DOI: 10.1016/j.jhazmat.2015.09.015.
  • [33] Gallegos-Acevedo et al. 2014 – Gallegos-Acevedo, P.M., Espinoza-Cuadra, J. and Olivera-Ponce, J. 2014. Conventional flotation techniques to separate metallic and nonmetallic fractions from waste printed circuit boards with particles nonconventional size. Journal of Mining Science 50(5), pp. 974-981, DOI: 10.1134/S1062739114050172.
  • [34] Gaustad et al. 2021 – Gaustad, G., Williams, E. and Leader, A. 2021. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resources, Conservation and Recycling 167, DOI: 10.1016/j.resconrec.2020.105213.
  • [35] Ghosh et al. 2015 – Ghosh, B., Ghosh, M., Parhi, P. and Mukhe, P. 2015. Waste Printed Circuit Boards recycling: An extensive assessment of current status. Journal of Cleaner Production Elsevier Ltd, pp. 5-19, DOI: 10.1016/j.jclepro.2015.02.024.
  • [36] Graedel et al. 2015 – Graedel, T., Harper, E. and Nassar, N. 2015. Criticality of metals and metalloids. Proceedings of the National Academy of Sciences of the United States of America 112(14), pp. 4257-4262, DOI: 10.1073/pnas.1500415112.
  • [37] He et al. 1995 – He, X., Logan, T. and Traina, S. 1995. Physical and Chemical Characteristics of Selected U.S. Municipal Solid Waste Composts. Journal of Environmental Quality 24(3), pp. 543-552, DOI: 10.2134/JEQ1995.00472425002400030022X.
  • [38] He et al. 2017 – He, X., Li, X., Han, J. and Zhan, H. 2017. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. Journal of Power Sources 340, pp. 183-191, DOI: 10.1016/j.jpowsour.2016.11.073.
  • [39] Huber, F. and Blasenbauer, D. 2020. Complete determination of the material composition of municipal solid waste incineration bottom ash. Waste Management 102, DOI: 10.1016/j.wasman.2019.11.036.
  • [40] Hykš, J. and Hjelmar, O. 2018. Utilisation of Incineration Bottom Ash (IBA) from Waste Incineration – Prospects and Limits. Removal, Treatment and Utilisation of Waste Incineration Bottom Ash pp. 11-24.
  • [41] IRT 2020. Material criticality: an overview for decision-makers. Internationa Round Table on Materials Criticality in Business Practice.
  • [42] Jeswani et al. 2013 – Jeswani, H.K., Smith, R.W. and Azapagic, A. 2013. Energy from waste: Carbon footprint of incineration and landfill biogas in the UK. International Journal of Life Cycle Assessment 18(1), pp. 218-229, DOI: 10.1007/s11367-012-0441-8.
  • [43] Jowitt et al. 2018 – Jowitt, S.M. Werner, T. and Wenig, Z. 2018. Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry 13, pp. 1-7, DOI: 10.1016/J.COGSC.2018.02.008.
  • [44] Jung et al. 2004 – Jung, C.H., Matsuto, T., Tanaka, N. and Okada, T. 2004. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Management 24(4), pp. 381-391, DOI: 10.1016/S0956-053X(03)00137-5.
  • [45] Kaza, S. 2018. What a Waste 2.0 Introduction - Snapshot of Solid Waste Management to 2050. Urban Development Series, pp. 1-38. [Online:] https://openknowledge.worldbank.org/handle/10986/30317 [Accessed: 2023-01-17].
  • [46] Kose Mutlu, B. and Kantoni, B. 2018. Application of nanofiltration for Rare Earth Elements recovery from coal fly ash leachate: Performance and cost evaluation. Chemical Engineering Journal 349, pp. 309-317, DOI: 10.1016/J.CEJ.2018.05.080.
  • [47] Li et al. 2004 – Li, J., Shrivastava, P. and Gao, Z. 2004. Printed circuit board recycling: A state-of-the-art survey. IEEE Transactions on Electronics Packaging Manufacturing 27(1), pp. 33-42, DOI: 10.1109/TEPM.2004.830501.
  • [48] Lynn et al. 2017 – Lynn, C.J., Ghataora, G. and Dhir, R. 2017. Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. International Journal of Pavement Research and Technology 10(2), pp. 185-201, DOI: 10.1016/j.ijprt.2016.12.003.
  • [49] Joseph et al. 2020 – Joseph, A.M., Snellings, R. and Nielsen, P. 2020. Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy. Construction and Building Materials 260, DOI: 10.1016/j.conbuildmat.2020.120485.
  • [50] Mastalerz et al. 2020 – Mastalerz, M., Drobniak, A. and Eble, C. 2020. Rare earth elements and yttrium in Pennsylvanian coals and shales in the eastern part of the Illinois Basin. International Journal of Coal Geology. 231, p. 103620, DOI: 10.1016/J.COAL.2020.103620.
  • [51] Mehr et al. 2021 – Mehr, J., Haupt, M., Skutan, S. and Morf, L. 2021. The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash. Waste Management 119, pp. 330-341, DOI: 10.1016/j.wasman.2020.09.001.
  • [52] Mining 2021. Extracting rare earths from fertilizer byproduct may soon be a reality. [Online:] https://www.mining.com/extracting-rare-earths-from-fertilizer-byproduct-may-soon-be-a-reality/ [Accessed: 2023-02-16].
  • [53] Ministry of the Environment 2023. Act of December 14, 2012 on waste. OJ 2022 item 699. (Ministerstwo Środowiska 2023. Ustawa z dnia 14 grudnia 2012 r. o odpadach. Dz.U. 2022 poz. 699). [Online:] https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20130000021 [Accessed: 2023-02-01] (in Polish).
  • [54] Morf et al. 2013 – Morf, L.S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Lorenzo, F. and Boni, D. 2013. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant. Waste Management 33(3), DOI: 10.1016/j.wasman.2012.09.010.
  • [55] Muchova et al. 2009 – Muchova, L., Bakker, E. and Rem, P. 2009. Precious metals in municipal solid waste incineration bottom ash. Water, Air, and Soil Pollution: Focus 9(1-2), pp. 107-116, DOI: 10.1007/S11267-008-9191-9.
  • [56] Nassar, N. and Fortier, S.M. 2021. Methodology and Technical Input for the 2021 Review and Revision of the U.S. Critical Minerals List. U.S. Geological Survey Open File Report, 2021-1045, p. 31.
  • [57] Nikravan et al. 2020 – Nikravan, M., Ramezanianpour, A. and Maknoon, R. 2020. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant. Journal of Environmental Management 260, DOI: 10.1016/j.jenvman.2019.110042.
  • [58] Nørgaard, K.P. and Hyks, J. 2019. Optimizing large-scale ageing of municipal solid waste incinerator bottom ash prior to the advanced metal recovery: Phase I: Monitoring of temperature, moisture content, and CO2 level. Waste Management 85, pp. 95-105, DOI: 10.1016/j.wasman.2018.12.019.
  • [59] Offerman, S. 2019. General Introduction to Critical Materials, pp. 1-10, DOI: 10.1142/9789813271050_0001.
  • [60] Papadopoulos et al. 2019 – Papadopoulos, A., Tzifas, I. and Tsikos, H. 2019. The potential for REE and associated critical metals in coastal sand (Placer) deposits of Greece: A review. Minerals 9(8), DOI: 10.3390/min9080469.
  • [61] Quina, M. and Botempi, A. 2018. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Science of the Total Environment 635, pp. 526-542, DOI: 10.1016/j.scitotenv.2018.04.150.
  • [62] Rybak, A. and Rybak, A. 2021. Characteristics of some selected methods of rare earth elements recovery from coal fly ashes. Metals 11(1), pp. 1-27, DOI: 10.3390/met11010142.
  • [63] Sabbas et al. 2003 – Sabbas, T., Muntoni, A. and Pollettini, A. 2003. Management of municipal solid waste incineration residues. Waste Management 23(1), pp. 61-88, DOI: 10.1016/S0956-053X(02)00161-7.
  • [64] Sarvar et al. 2015 – Sarvar, M., Salarirad, M. and Shabani, M. 2015. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods. Waste Management 45, pp. 246-257, DOI: 10.1016/j.wasman.2015.06.020.
  • [65] Scarlat et al. 2019 – Scarlat, N., Fahl, F. and Dallemand, J. 2019. Status and Opportunities for Energy Recovery from Municipal Solid Waste in Europe. Waste and Biomass Valorization 10(9), pp. 2425-2444, DOI: 10.1007/s12649-018-0297-7.
  • [66] Schlumberger et al. 2007 – Schlumberger, S., Schuster, M. and Ringmann, S. 2007. Recovery of high purity zinc from filter ash produced during the thermal treatment of waste and inerting of residual materials. Waste Management and Research 25(6), pp. 547-555, DOI: 10.1177/0734242X07079870.
  • [67] Shaub, W.M. 1997. Municipal solid waste incinerator residues. Resources, Conservation and Recycling. DOI: 10.1016/s0921-3449(97)00026-8.
  • [68] Šyc et al. 2010 – Šyc, M., Keppert, M. and Pohorely, M. 2010. Fly ash treatment technology in modern waste incineration plant. 2nd International Conference on Sustainable Construction Materials and Technologies, pp. 405-412.
  • [69] Šyc et al. 2020 – Šyc, M., Simon, F., Hyks, J. and Braga, R. 2020. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. Journal of Hazardous Materials 393, DOI: 10.1016/j.jhazmat.2020.122433.
  • [70] Tesfaye et al. 2017 – Tesfaye, F., Lindberg, D. and Hamuyun, J. 2017. Improving urban mining practices for optimal recovery of resources from e-waste. Minerals Engineering 111, pp. 209-221, DOI: 10.1016/j.mineng.2017.06.018.
  • [71] TS. 2015. Technology Transitions Case Study Critical Materials Institute. CMI : Accelerating Energy Innovations. Transitions and Study.
  • [72] USGS 2020. USGS Online Publications Directory. United States Geological Survey. [Online:] https://pubs.usgs.gov/periodicals/mcs2020/ [19.01.2023].
  • [73] Vidyadhar, A. and Das, A. 2013. Enrichment implication of froth flotation kinetics in the separation and recovery of metal values from printed circuit boards. Separation and Purification Technology 118, pp. 305-312, DOI: 10.1016/j.seppur.2013.07.027.
  • [74] Virginia Tech 2021. DOE Funds Novel Project to Recover Rare Earths from Municipal Solid Waste Incinerated Ash. Mining and Minerals Engineering. [Online:] https://www.mining.vt.edu/news/articles/fall-2020/research-project-aims-to-recover-rare-earths-while-reducing-land.html [Accessed: 2023-02-13].
  • [75] WWF 2023. World Waste Facts. [Online:] https://www.theworldcounts.com/challenges/planet-earth/state-of-the-planet/world-waste-facts/story [Accessed: 2023-02-13].
  • [76] Yao et al. 2014 – Yao, Q., Samed, N., Keller, B. and Huang, L. 2014. Mobility of heavy metals and rare earth elements in incineration bottom ash through particle size reduction. Chemical Engineering Science 118, pp. 214-220, DOI: 10.1016/j.ces.2014.07.013.
  • [77] Yoo et al. 2009 – Yoo, J.M., Jeong, J. and Yoo, K. 2009. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Management 29(3), pp. 1132-1137, DOI: 10.1016/j.wasman.2008.06.035.
  • [78] Yue-min et al. 2006 – Yue-min, Z., Wen, X. and Shi, H. 2006. Study on Metals Recovery from –0.074 mm Printed Circuit Boards by Enhanced Gravity Separation. The Chinese Journal of Process Engineering.
  • [79] Zeller et al. 2019 – Zeller, V., Towa, E. and Degrez, M. 2019. Urban waste flows and their potential for a circular economy model at city-region level. Waste Management 83, pp. 83-94, DOI: 10.1016/J.WASMAN.2018.10.034.
  • [80] Zhang et al. 2022 – Zhang, C., Mingming, H., Di Maio, F., Sprecher, B. and Yang, X. 2022. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environment 803, DOI: 10.1016/j.scitotenv.2021.149892.
  • [81] Zucha et al. 2020 – Zucha, W., Weibel, M. and Wolffers, M. 2020. Inventory of MSWI fly ash in Switzerland: Heavy metal recovery potential and their properties for acid leaching. Processes 8(12), pp. 1-13, DOI: 10.3390/pr8121668.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a53cc0ca-0e97-4200-985a-d7b7a9875f87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.