PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A dynamic angle metrology system based on fibre-optic gyroscope and rotary table

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic angle measurement (DAM) plays an important role in precision machining, aerospace, military and artificial intelligence. Because of its advantages including high sensitivity, solid state and miniaturization, fibre-optic gyroscope (FOG) has great application prospects in the field of DAM. In this paper, we propose a dynamic angle metrology method based on FOG and a rotary table to evaluate the DAM accuracy with FOG. The system synchronously collects data from the FOG and rotary table, and analyses the DAM accuracy of the FOG for different sway conditions compared with that of the angle obtained from the rotary table. An angle encoder in the rotary table provides absolute or incremental angular displacement output with angular displacement measurement accuracy of 10′′ (0:0028°) and angular displacement repeat positioning accuracy of 3′′ (0:00083°), and can be used as an angle reference. The experimental results show that the DAM accuracy of the FOG is better than 0:0028° obtained with the angular encoder, and the absolute DAM accuracy of the FOG is better than 0:0048° for given conditions. At the same time, for the multi-path signal synchronization problem in the metrology field, this paper proposes a signal delay measurement method combining test and algorithm procedures, which can control a delay within 25 μs.
Rocznik
Strony
497--504
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang 310027, China
autor
  • Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang 310027, China
  • Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang 310027, China
autor
  • Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang 310027, China
autor
  • Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang 310027, China
Bibliografia
  • [1] Chen, T., Zhang, L., Zhang, G., Chen, B. (2006). Design of a displacement/angle measurement system based on laser triangulation principle. 2006 International Technology and Innovation Conference, 319-322.
  • [2] Plosker, E., Arnon, S.J. (2014). Statistics of remote roll angle measurement. Applied Optics, 53, 2437.
  • [3] Te, C., Long, C., Yingfeng, C., Xing, X. (2018). Estimation of vehicle sideslip angle via pseudo-multisensor information fusion method. Metrol. Meas. Syst., 25(4), 499-516.
  • [4] Łuczak, S. (2014). Dual-axis test rig for MEMS tilt sensors. Metrol. Meas. Syst., 21(3), 351-362.
  • [5] Chen, L., Zhang, D., Zhou, Y., Liu, C., Che, S.J. (2018). Design of a high-precision and non-contact dynamic angular displacement measurement with dual-Laser Doppler Vibrometers. Scientific Reports, 8, 9094.
  • [6] Skalski, A., Machura, B. (2015). Metrological analysis of microsoft kinect in the context of object localization. Metrol. Meas. Syst., 22(4), 469-478.
  • [7] Mayagoitia, R.E., Nene, A.V., Veltink, P.H. (2002). Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics, 35, 537-542.
  • [8] Yang, X.B., Xiao-Jun, H.E., Zhang, L., Kai, X.U., Jin, G.J. (2008). Effect and Simulation of the Deviant Angle Error on TDI CCD Cameras Image. Opto-Electronic Engineering, 35, 45-50.
  • [9] Masuda, T., Kajitani, M.J. (1989). An automatic calibration system for angular encoders. Precision Engineering, 11, 95-100.
  • [10] Kinnane, M.N., Hudson, L.T., Henins, A., Mendenhall, M.H.J. (2015). A simple method for high-precision calibration of long-range errors in an angle encoder using an electronic nulling autocollimator. Metrologia, 52, 244-250.
  • [11] Kisała, P., Skorupski, K., Cięszczyk, S., Panas, P., Klimek, J. (2018). Rotation and twist measurement using tilted fibre bragg gratings. Metrol. Meas. Syst., 25(4), 429-440.
  • [12] Rui, M., Deng, X., Shen, H.J. (2001). Study on the laser interference angle measurement. Forest Engineering.
  • [13] Sollogub, V.S.J. (1982). Laser interference method of measuring small taper angles in plates in the IR range. Measurement Techniques, 25, 725-728.
  • [14] Pavan, Y.K., Chatterjee, S., Negi, S.S.J. (2016). Small roll angle measurement using lateral shearing cyclic path polarization interferometry. Applied Optics, 55, 979-983.
  • [15] Filatov, Y.V., Loukianov, D., Probst, R. (1997). Dynamic angle measurement by means of a ring laser. Metrologia, 34, 343.
  • [16] Tian, W.J. (2004). Study on PSD-based Angle Detecting Principle for ESG. Chinese Journal of Scientific Instrument, 25, 406-408, 412.
  • [17] Zhu, G.L., Xue-Bing, W.U., Zou, W.J.J. (2006). PSD-Based Angle Measurement System. textitElectrical Measurement & Instrumentation, 353-370.
  • [18] Pan, T., Xu, W.J. (2015). Detection of Rope and Rope’s Swaying Angle of Overhead Crane Based on Computer Vision. Computer Measurement & Control, 23, 2263-2265, 2269.
  • [19] Dong-Liang, X.V., Liu, H.J. (2008). Research of winding angle detection system based on computer vision. Mechanical & Electrical Engineering Magazine.
  • [20] Wang, J., Ni, X.H.J. (2013). Angle Measurement Based on Computer Vision. Applied Mechanics &Materials, 456, 115-119.
  • [21] Lefèvre, H.C.J. (1997). Fundamentals of the Interferometric Fiber-optic Gyroscope. Optical Review, 4, A20-A27.
  • [22] Prayogo, R.C., Triwiyatno, A. (2018). Quadruped Robot with Stabilization Algorithm on Uneven Floor using 6 DOF IMU based Inverse Kinematic. 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 39-44.
  • [23] Cheng, P., Oelmann, B. (2010). Joint-angle measurement using accelerometers and gyroscopes - A survey. IEEE Transactions on instrumentation and measurement, 59, 404-414.
  • [24] Zheng, X., Wei, W. (2009). Reliability Study of Redundant Configuration of IMU Fiber Optic Gyroscope Inertial Measurement Unit. International Conference on Reliability, Maintainability and Safety, 87-90.
  • [25] Ravaille, A. et al. (2018). Rotation measurements using aa resonant fiber optic gyroscope based on Kagome fiber. arXiv preprint arXiv:1812.04694.
  • [26] Wolf, M., Cheema, S.A. Haardt, M. (2016). Synchronization and channel estimation for optical block-transmission systems with IM/DD. International Conference on Transparent Optical Networks.
  • [27] Mencel, A.J. (1986). The fast synchronization in a direct sequence of spread spectrum systems. Cells Tissues Organs, 194, 205-210.
  • [28] Zhao, Y., Cao, J., Li, Y. (2018). An Improved Timing Synchronization Method for Eliminating Large Doppler Shift in LEO Satellite System. 2018 IEEE 18th International Conference on Communication Technology (ICCT), 762-766.
  • [29] Tonello, A.M., Rinaldo, R.J. (2005). A time-frequency domain approach to synchronization, channel estimation, and detection for DS-CDMA impulse-radio systems. IEEE Transactions on Wireless Communications, 4, 3018-3030.
Uwagi
EN
1. The authors would like to thank the State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, China. This work was financially supported by The National Key Researchand Development Program of China (2017YFF0204901), the National Natural Science Foundation of China (Grant No. 61203190), the Natural Science Foundation of Zhejiang Province (Grant No. LY17F030010) and The Fundamental Research Funds for Central Universities and Colleges Funding (2016XZZX004-01).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a535efef-625c-4cec-bd03-c27648b0d1af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.