Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies.
Słowa kluczowe
Rocznik
Tom
Strony
519--525
Opis fizyczny
Bibliogr. 22 poz., schem., tab., wykr.
Twórcy
autor
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India
autor
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India
Bibliografia
- [1] El Ayach, Omar, et al. ”Spatially sparse precoding in millimeter wave MIMO systems.” IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014 http://doi.org/10.1109/TWC.2014.011714.130846.
- [2] Zhang, Dan, et al. ”SVD-based low-complexity hybrid precoding for millimeter-wave MIMO systems.” IEEE Communications Letters 22.10 (2018): pp. 2176-2179. http://doi.org/10.1109/LCOMM.2018.2865731.
- [3] F. Zhang and M. Wu, “Hybrid analog-digital precoding for millimeter wave MIMO Systems,” in 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, aug 2017. http://doi.org/10.1155/2021/5532939.
- [4] X. Liu, X. Li, S. Cao, et al., “Hybrid precoding for massive mmWave MIMO systems,” IEEE Access, vol. 7, pp. 33577–33586, 2019.
- [5] E. Zhang and C. Huang, “On achieving an optimal rate of digital precoder by RF-baseband codesign for MIMO systems,” in Proc. 80th IEEE Veh. Technol. Conf. (VTC Fall). Vancouver, BC, Sept. 2014, pp. 1–5. https://doi.org/10.1109/VTCFall.2014.6966076.
- [6] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016. https://doi.org/10.1109/JSTSP.2016.2520912.
- [7] C. Rusu, R. Mendez-Rial, N. Gonzalez-Prelcic, and R. W. Heath, “Low complexity hybrid precoding strategies for millimeter-wave communication systems,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8380–8393, Dec. 2016. http://doi.org/10.1109/TWC.2016.2614495.
- [8] R. Rajashekar and L. Hanzo, “Hybrid beamforming in mmwave MIMO systems having a finite input alphabet,” IEEE Trans. Commun., vol. 64, no. 8, pp. 3337–3349, Aug. 2016. http://doi.org/10.1109/TCOMM.2016.2580671.
- [9] Zhang, Didi, et al. ”Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems.” IEEE Transactions on Communications 66.2 (2017): 662-674. http://doi.org/10.1109/TCOMM.2017.2756882.
- [10] Lu. Yiqi, et al. ”Improved hybrid precoding scheme for mmWave large-scale MIMO systems.” IEEE Access 7 (2019): 12027-12034. http://doi.org/10.1109/ACCESS.2019.2892136 .
- [11] Jindal, Nihar. ”MIMO broadcast channels with finite-rate feedback.” IEEE Transactions on information theory 52.11 (2006): 5045-5060. http://doi.org/10.1109/TIT.2006.883550 .
- [12] Rusek, Fredrik, et al. ”Scaling up MIMO: Opportunities and challenges with very large arrays.” IEEE signal processing magazine 30.1 (2012): 40-60. http://doi.org/10.1109/MSP.2011.2178495.
- [13] A. S. Lewis and J. Malick, “Alternating projections on manifolds,” Mathematics of Operations Research, vol. 33, no. 1, pp. 216–234, 2008.
- [14] R. Escalante and M. Raydan, Alternating Projection Methods. Society for Industrial and Applied Mathematics, 2011, vol. 8. https://doi.org/10.1137/9781611971941.
- [15] Y. Jiang, W. Hager, and J. Li, “The generalized triangular decomposition,” Mathematics of computation, vol. 77, no. 262, pp. 1037–1056, 2008.
- [16] C. Weng, C.-Y. Chen, and P. Vaidyanathan, “Generalized triangular decomposition in transform coding,” IEEE transactions on signal processing, vol. 58, no. 2, pp. 566–574, 2009. http://doi.org/10.1109/TSP.2009.2031733.
- [17] Y. Kabalci and H. Arslan, “Hybrid precoding for mm-wave massive MIMO systems with generalized triangular decomposition,” 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), pp. 1–6, 2018.
- [18] M. Su, Y. Huang, C. Zhang, J. Zhang, and Y. Li, “Hybrid Precoder Design for Millimeter Wave Systems Based on Geometric Construction,” 2017, pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254858.
- [19] M. Xiao et al., “Millimeter-Wave Communications for Future Mobile Networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1935, Sep. 2017. https://doi.org/10.1109/JSAC.2017.2719924.
- [20] W. Yuan, V. Kalokidou, S. M. D. Armour, A. Doufexi, and M. A. Beach, “Application of Non-Orthogonal Multiplexing to mmWave Multi-User Systems,” 2017, pp. 1–6.
- [21] S. Yong and C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 50–50, 2007. https://doi.org/10.1155/2007/78907.
- [22] R. Daniels and R. W. Heath, Jr., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, 2007. http://doi.org/10.1109/MVT.2008.915320
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5331016-696d-44b5-be9d-c6e9c41b6152