PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compact nanosecond pulse generator based on IGBT and spark gap cooperation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper describes a new architecture of a high-voltage solid-state pulse generator. This generator combines the two types of energy storage systems: inductive and capacitive, and consequently operates two types of switches: opening and closing. For the opening switch, an isolated gate bipolar transistor (IGBT) was chosen due to its interesting characteristics in terms of controllability and robustness. For the closing switch, two solutions were tested: spark-gap (SG) for a powerful low-cost solution and avalanche mode bipolar junction transistor (BJT) for a fully semiconductor structure. The new architecture has several advantages: simple structure and driving system, high and stable controllable repetition rate that can reach 1 kHz, short rising time of a few nanoseconds, high gain and efficiency, and low cost. The paper starts with the mathematical analysis of the generator operation followed by numerical simulation of the device. Finally add a comma the results were confirmed by the experimental test with a prototype generator. Additionally, a comparative study was carried out for the classical SG versus the avalanche mode BJT working as a closing switch.
Rocznik
Strony
377--388
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] F. Früngel: High speed pulse technology, Academic Press, 1965.
  • [2] H.A. Ryan, S. Hirakawa, E. Yang, C. Zhou, and S. Xiao, “High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses”, IEEE Transactions on Biomedical Circuits and Systems 12(2), 338‒350 (2018).
  • [3] Y. Achour and J. Starzyński, “High-frequency displacement current transformer with just one winding”, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering 38(4), 1141–1153 (2019).
  • [4] C.R. Rose, “Type-E pulse-forming-network theory and synthesis”, Pulsed Power Conference (PPC), (2015).
  • [5] H. Ghawde and R. Harchandani, “Comparison of pulse forming networks for Marx generator”, International Conference on Nascent Technologies in Engineering (ICNTE), (2017).
  • [6] I.A.D. Lewis, F.H. Wells: Millimicrosecond Pulse Techniques, Second Edition, Pergamon science series electronics and waves, PERGAMON press, (1959).
  • [7] G. Schaefer, M. Kristiansen, A.H. Guenther: Gas Discharge Closing Switches, Advances in Pulsed Power Technology, Springer US, (2013).
  • [8] Y. Kozasa, S. Sato, T. Sugai, W. Jiang, A. Tokuchi, M. Akemoto, and H. Nakajima, “Solid-state Marx generator for international linear collider”, IEEE International Power Modulator and High Voltage Conference (IPMHVC), 701–704 (2014).
  • [9] R. Stala, S. Pirog, A. Penczek, A. Kawa, Z. Waradzyn, A. Mondzik, and A. Skała, “A family of high-power multilevel switched capacitor-based resonant DC-DC converters – operational parameters and novel concepts of topologies”, Bull. Pol. Ac.: Tech. 65(5), 639–651 (2017).
  • [10] J. Perez, T. Sugai, A. Tokuchi, and W. Jiang, “Marx Generators Based on MOS-Gated Switches With Magnetic Assist for Accelerator Applications”, IEEE Transactions on Plasma Science 46(6), 2114–2119 (2018).
  • [11] J. Rąbkowski and T. Płatek, “A study on power losses of the 50 kVA SiC converter including reverse conduction phenomenon”, Bull. Pol. Ac.: Tech. 64(4), 907–914 (2016).
  • [12] C. Yao, S. Dong, Y. Zhao, Y. Mi, and C. Li, “A Novel Configuration of Modular Bipolar Pulse Generator Topology Based on Marx Generator With Double Power Charging”, IEEE Transactions on Plasma Science 44(10), 1872–1878 (2016).
  • [13] S. Zabihi, Z. Zabihi, and F. Zare, “A solid-state Marx generator with a novel configuration”, 19th Iranian Conference on Electrical Engineering (ICEE), (2011).
  • [14] M. Balcerak, R. Pałka, and M. Hołub, “High voltage pulse generation using magnetic pulse compression”, Archives of Electrical Engineering, Polish Academy of Sciences 62(3), (2013).
  • [15] A.H. Guenther, T. Martin, M. Kristiansen: Opening Switches, Advances in Pulsed Power Technology, Springer US, (2012).
  • [16] Y. Achour, J. Starzyński, W. Kasprzycka, and E.A. Trafny, “Compact low-cost high-voltage pulse generator for biological applications”, International Journal of Circuit Theory and Applications 47(12), 1948–1962 (2019).
  • [17] M. Szewczyk, ”Multi-spark modeling of very fast transient over-voltages for the purposes of developing HV and UHV gasinsulated switchgear and of conducting insulation co-ordination studies”, Bull. Pol. Ac.: Tech. 65(6), 871–882 (2017).
  • [18] Y. Achour, J. Starzyński, and A. Josko, “Nanosecond EMP simulator using a new high voltage pulse generator”, Przeglad Elektrotechniczny 93(10), 33–36 (2017).
  • [19] Y. Achour, J. Starzyński, A. Josko, and M. Suproniuk, “D-dot, Bdot Data Processing of Fields Generated with Broadband Pulsed Antenna”, Przeglad Elektrotechniczny 95(11), 109–112 (2019).
  • [20] M. Hochberg et al., “A Fast Modular Semiconductor-Based Marx Generator for Driving Dynamic Loads”, IEEE Transactions on Plasma Science 47(1), 627–634 (2019).
  • [21] M. Hochberg, M. Sack, D. Herzog, A. Weisenburger, and G. Mueller, “Design Validation of a Single Semiconductor-Based Marx-Generator Stage for Fast Step-Wise Arbitrary Output Waveforms”, IEEE Transactions on Plasma Science 46(10), 3284–3290 (2018).
  • [22] Z. Li, H. Liu, S. Jiang, and J. Rao, “A novel drive circuit with overcurrent protection for solid state pulse generators”, IEEE Transactions on Dielectrics and Electrical Insulation 26(2), 361–366 (2019).
  • [23] Y. Liu, R. Fan, X. Zhang, Z. Tu, and J. Zhang, “Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators,”, IEEE Transactions on Dielectrics and Electrical Insulation 26(2), 476–483 (2019).
  • [24] C.Wang, B. Yuan, J. Mao, and W. Shi, “High Repetition Frequency and High Voltage Pulse Generator Research Based on NLTLs”, International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, 1–3 (2018).
  • [25] S. Zabihi, F. Zare, G. Ledwich, A. Ghosh, and H. Akiyama, “A new family of Marx generators based on commutation circuits”, IEEE Transactions on Dielectrics and Electrical Insulation 18(4), 1181–1188 (2011).
  • [26] S. Zabihi, Z. Zabihi, and F. Zare, “A Solid-State Marx Generator With a Novel Configuration”, IEEE Transactions on Plasma Science 39(8), 1721–1728 (2011).
  • [27] J.W. Baek, M.H. Ryu, D.W. Yoo, and H.G. Kim, “High voltage pulse generator using boost converter array”, IEEE 28th Annual Conference of the Industrial Electronics Society (IECON), 395–399 (2002).
  • [28] M. Taherian, M. Allahbakhshi, E. Farjah, and H. Givic, “A Modular Topology of Marx Generator Using Buck–Boost Converter”, IEEE Transactions on Plasma Science 47(1), 549–558 (2019).
  • [29] L. Yu, Z. Jiu, T. Sugai, A. Tokuchi, and W. Jiang, “Pulsed Voltage Adder Topology Based on Inductive Blumlein Lines”, IEEE Transactions on Plasma Science 46(5), 1816–1820 (2018).
  • [30] M.R. Kazemi, T. Sugai, A. Tokuchi, and W. Jiang, “Waveform Control of Pulsed-Power Generator Based on Solid-State LTD”, IEEE Transactions on Plasma Science 45(2), 247–251 (2017).
  • [31] S.K. Lyubutin, G.A. Mesyats, S.N. Rukin, and B.G. Slovikovskii, “Repetitive nanosecond all-solid-state pulsers based on SOS diodes”, Pulsed Power Conference, 992–998 (1997).
  • [32] V.A. Kozlov, I.A. Smirnova, S.A. Moryakova, and A.F. Kardo-Sysoev, “New generation of drift step recovery diodes (DSRD) for subnanosecond switching and high repetition rate operation”, Conference Record of the Twenty-Fifth International Power Modulator Symposium, 441–444 (2002).
  • [33] M.S. Nikoo, S.M. Hashemi, and F. Farzaneh, “A Two-Stage DSRDBased High-Power Nanosecond Pulse Generator”, IEEE Transactions on Plasma Science 46(2), 427–433 (2018).
  • [34] A.S. Kesar, “A Compact, 10-kV, 2-ns Risetime Pulsed-Power Circuit Based on Off-the-Shelf Components”, IEEE Transactions on Plasma Science 46(3), 594–597 (2018).
  • [35] R. Fullwood, “On the Use of 2N504 Transistors in the Avalanche Mode for Nuclear Instrumentation”, Review of Scientific Instruments 31(11), 1186–1189 (1960).
  • [36] M. Inokuchi, M. Akiyama, T. Sakugawa, H. Akiyama, and T. Ueno, “Development of Miniature Marx Generator using BJT”, IEEE Pulsed Power Conference (PPC), 57–60 (2009).
  • [37] T. Ohkami, M. Souda, T. Saito, C. Yamazaki, S.Asano, Y. Suzuki, A. Hayakawa, M. Osakabe, K. Nagaoka, Y. Takeiri, and O. Kaneko, “Development of a 40 kV Series-connected IGBT Switch”, Power Conversion Conference – Nagoya, 1175–1180 (2007).
  • [38] Y. Achour, J. Starzyński, and A. Łasica, “New embedded nanosecond pulse generator based on spark gap and IGBT”, IEEE 21st International Conference on Pulsed Power (PPC), (2017).
  • [39] J.C. Pouncey, and J.M. Lehr, “A spark gap model for LTspice and similar circuit simulation software”, 2015 IEEE Pulsed Power Conference (PPC), 1–6 (2015).
  • [40] R.J. Baker, “High voltage pulse generation using current mode second breakdown in a bipolar junction transistor”, Review of Scientific Instruments 62(4), 1031–1036 (1991).
  • [41] S.J.V. Bright, S. Ramkumar, H. Anand, “Positive output elementary Luo converter for fixed-frequency ZVS operation”, Bull. Pol. Ac.: Tech. 65(2), 255–262 (2017).
  • [42] Ferroxcube, 3F3 material specifications, ferrite 3F3 Datasheet, (2008).
  • [43] ANSYS, Inc. ANSYS Electronics Desktop, http://www.ansys.com/fr-fr/products/electronics/ansyselectronics- desktop.
  • [44] C. Basso, “Spice model simulates spark-gap arrestor”, EDN Magazine 1977, 3–5 (1997).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a532f93d-270e-494e-80f5-8a195066f5d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.