PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimates of Sulfur Dioxide Emissions from Lignite Power Plants in Kosovo

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The importance of energy in the economic development of countries in transition is almost vital, especially in countries with large coal mineral resources, such as our country, Kosovo. Quantification and accurate analysis of sulfur dioxide (SO2 ) emissions from lignite power plants are done to inform environmental stakeholders, improve regulatory compliance, protect public health, improve emission control technologies, and support environmental practices. sustainable energy. This study investigated the quantification and accurate analysis of SO2 emissions from lignite power plants to inform environmental stakeholders, improve regulatory compliance, protect public health, improve emission control technologies, and support sustainable energy practices. The laboratory analyses performed with standard methods have resulted in different values for the parameters: Moisture, ash, and sulfur content in lignite is up to 45%, 20%, and 1.2% during the year 2023, through these results we have calculated the SO2 emission that resulting in an average value of 777.4 kg/h. The realized correlation o between the SO2 emission and parameters such as Moisture, sulfur in lignite (total and organic), and High thermal, has increased the accuracy of SO2 emission estimates, the components that are active components during the coal combustion process. Better estimates facilitate a more accurate assessment of the environmental impact of organic SO2 emissions, such as their role in acid rain formation and ecosystem damage. This assessment reflects the poor state of current lignite combustion technologies and suggests their improvement in terms of controlling SO2 emissions.
Słowa kluczowe
Twórcy
  • Department of Technology, Faculty of Food Technology, University “Isa Boletini” – Mitrovica, Republic of Kosovo
  • Department of Technology, Faculty of Food Technology, University “Isa Boletini” – Mitrovica, Republic of Kosovo
Bibliografia
  • 1. Abelson P.H. 1975. Control of sulfur dioxide emissions from coal. Science (New York, N.Y.), 189(4199), 253–253.
  • 2. Davut U., Sibel Ö. 1997. Correlations for the combustible sulfur contents of Turkish coals from sulfur forms and CaO analyses, Fuel, 76(11), 995–997.
  • 3. Medunić G., Kuharić Ž., Krivohlavek A., et al. 2018b. Selenium, sulfur, trace metal, and BTEX levels in soil, water, and lettuce from the Croatian Raša Bay contaminated by superhigh-organic-sulfur coal. Geosciences, 8(11), 408–426.
  • 4. Train Re. 1975. Sulfur dioxide pollution. Science (New York, N.Y.), 189(4205), 748–750.
  • 5. Seinfeld J.H. 1975. Air Pollution: Physical and Chemical Fundamentals, McGraw-Hill, Inc, 16–23.
  • 6. Scott H.M., Soskolne C.L., Martin S.W., Ellehoj E.A., Coppock R.W., Guidotti T.L., Lissemore K.D. 2003. Comparison of two atmospheric dispersion models to assess farm-site exposure to sour-gas processing plant emissions. Preventive Veterinary Medicine, 57, 15–34.
  • 7. Çelik P., Aksoy D., Koca S., Koca H., Çabuk A. 2019. The approach of biodesulfurization for clean coal technologies: a review. International Journal of Environmental Science and Technology, 16(4), 2115–2132.
  • 8. Boylu F., Karaağaçlioğlu İ.E. 2018. Evaluation of coal components-coal calorific value relationship. Journal of Earth Sciences, 39(3), 221–236.
  • 9. Liu F., Lei Y., Shi J., Zhou L., Wu Z., Dong Y., Bi W. 2018. Effect of microbial nutrients supply on coal biodesulfurization. Journal of Hazardous Materials, 384, 121324.
  • 10. Li W., Tang Y. 2014. Sulfur isotopic composition of superhigh-organic-sulfur coals from the chenxi coalfield, Southern China. International Journal of Coal Geology, 127, 3–13.
  • 11. Chou C.-L. 1996. Geologic factors affecting the abundance, distribution, and speciation of sulfur in coals. In: Geology of Fossil Fuels, Proceedings of the 30th International Geological Congress: Part B, Beijing, China, 4–14.
  • 12. Chou C.-L. 2012. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol., 100, 1–13.
  • 13. Laban K., Atkin B. 2000. The direct determination of the forms of Sulphur in coal using microwave digestion and ICP - AES analysis. Fuel, 79(2), 173–180.
  • 14. Davidson R. 1994. Quantifying organic sulfur in coal: A review. Fuel, 73(7), 988–1005.
  • 15. Japan International Cooperation Agency (JICA). 2016. Republic of Kosovo Expert for Air Pollution Control Final Report.
  • 16. National Pollutant Inventory. 1999. Emission estimation technique manual. First published in December.
  • 17. U.S. Environmental Protection Agency. 2009. Air Quality Emission Factors.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a52f56fd-69e0-4d1b-b3ee-ccec94324bcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.