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1. Introduction

In control systems many controllers are implemented for mana-
ging various types of processes. The most popular are: the PID 
(proportional-integral-derivative) and the LQR (linear-quadra-
tic regulator). Over many years computers gained much more 
computing power which allowed for more calculations to be done 
in a shorter period of time. As a result, scientists and engineers 
began to introduce more advanced variants of controllers. Exam-
ples include control algorithms based on the mathematical model 
of the Model-Based-Design [19], adaptive controllers using the 
Lyapunov theorem [8, 20] or neural networks [4, 5].

The inverted pendulum is an unstable system with nonlinear 
dynamics. It is an example of the under actuated system – there 
are less inputs than numbers of degrees of freedom [17]. This is 
the reason why the task of controlling the inverted pendulum is 
difficult. Therefore, the inverted pendulum over the years has 
become one of the most important systems on which every con-
troller is tested. The extension of the inverted pendulum system 
is a double inverted pendulum system [16]. That system is even 
more unstable and more difficult to control.

There are many articles presenting various implementations 
of controllers for the inverted pendulum. The most popular are 
the PID [11–13] and the LQR [13, 14, 23] controllers. There are 
also more articles with advanced functions like the Lyapunov the-
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orem based controller [1, 2, 15, 26] and the fuzzy neural network 
controller [6, 14, 24, 25].

This paper proposes to combine the LQR controller with the 
more advanced adaptive controller based on Lyapunov theorem. 
This effect can be achieved by using a two-loop parallel design 
(fig. 1). One loop uses the standard LQR controller and the 
second one uses the adaptive controller. There is a need to con-
struct a control function of Lyapunov to guarantee stability [3].

This article is organized in five chapters. Chapter 2 shows 
the equations used to describe the inverted pendulum system. 
Chapter 3 describes designing specific controller – combination 
of LQR and the adaptive controller. Chapter 4 presents experi-
mental results of the proposed controller with quality indicators. 
Chapter 5 is a summary with conclusions.

2. The mathematical model of 
the inverted pendulum

Consider an inverted pendulum on a cart that can move only 
in one direction on rails with two rods attached to it. A typical 
inverted pendulum system is shown in figure 2 together with 
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Fig. 1. Block diagram of the system with two parallel controllers
Rys. 1. Schemat blokowy systemu z dwoma równoległymi regulatorami



the forces and system variables (described at the end of the 
chapter). This system has infinite equilibrium points, but the 
two most important ones are:

 − the stable one – the pendulum is directed vertically down-
wards,
 − the unstable one – the pendulum is directed vertically upwards.

The goal is to stabilize the system in its unstable position, 
where pendulum is directed vertically upwards. The equations of 
motion can be derived using Lagrangian equation as follows [22]:

 L = K − U (1)

where: K – kinetic energy, U – potential energy.

The x position of the pendulum is x + lsinθ and the y position 
is lcosθ, so the kinetic energy is:
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By simplifying the above equation, the following formula for 
kinetic energy can be obtained:
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The potential energy is as follows:

 U = mgl(1 − cosθ) (4)

Combining both equations, the Lagrangian equation of the 
system is:
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The next step is to consider the θ direction and velocity:
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By calculating the derivative of time, the following equation 
can be obtained:
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Therefore the Lagrangian equation of motion is:

 ( )cos sin 0ml x l gθ θ θ+ − =

  (11)

Finally, the general equations of the inverted pendulum sys-
tem are [3]:
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The next step is to determine the F force in the system
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Additionally, the state vector is described as below:
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This x can be extended to:
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F –  force applied to the cart,
x –  cart position,
m –  mass of the pendulum,
M –  mass of the cart,
θ –  pendulum angle,
g –  standard gravity,
l –  half the length of the pendulum,
u –  control signal.

3. Controller design

The goal of the controller is to stabilize the rod of an inverted 
pendulum in vertically upwards position with the cart in the 
starting position. One of the easiest ways to accomplish that is 
to use the LQR algorithm. Since this controller is very basic, 
it can be enhanced – combined with another controller. In this 
paper the LQR is combined with an adaptive controller based 
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Fig. 2. Diagram of the inverted pendulum [17]
Rys. 2. Schemat układu wahadła odwróconego [17]



on Lyapunov theorem. This effect can be achieved by using 
a two-loop parallel design.

Figure 3 shows the block diagram of the inverted pendu-
lum control system. It can be seen that the PLC is connected 
to a power interface and a PC. The power interface provides 
the required power to a DC motor and adjusts the measuring 
signals from incremental encoders. The computer was used to 
monitor and acquire process variables and also to implement 
applications for the PLC.

In order to prepare an adaptive controller, there is a need to 
develop a control law without taking into consideration the posi-
tion or velocity [3]. This system assumes that the rod’s length 
is unknown. Lyapunov law will guarantee the stability of the 
inverted pendulum. The first step to implement the controller 
is to define the position error of the pendulum:

	 ξ3 = x3 − θsp (22)

Then using Lyapunov function:

 
( ) 2

3 3
1
2

V ξ ξ=  (23)

The first virtual control can be received:

 4 3 3d spx k ξ θ= − +   (24)

where: k3 > 0, θsp – pendulum set angle.

The next step is to define the second error variable:

 4 4 4 4 3 3d spx x x kξ ξ θ= − = + +   (25)

State variables (26) and (27) can be written in space (x3, x4) 
as:

 3 3 3 4kξ ξ ξ= − +  (26)
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In that case Lyapunov function is expressed as follows:
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But due to the fact that length l is not known, an estimate  
is needed. In that case, the control should be modified:

 
( ) ( )2

3 4 4 3 3 4
ˆ 1 spu l k k kξ ξ θ ϕ = − + + − − + 

  (29)

The final form of Lyapunov function is shown below:
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Everything above allows to introduce an adaptation:

 
 (31)

where γ is an adaptive gain. Lyapunov function described 
above is negative, which means, that the whole system with 
the closed loop is globally asymptotically stable.

The second part of this controller is LQR. Consider the state-
-space equation [7]:

 A Bu= +x x  (32)

where:

 
T

x xθ θ =  x 

  (33)

The state feedback control is u = −Kx. Additionally cost 
function is given:

 ( )T TJ Q u Ru dt= +∫ x x  (34)

where: Q ≥ 0, R > 0 and Q is semi-definite and R is a definite 
symmetric constant matrices.

Vector K is computed from:

 K = R−1BTP (35)

where P is a positive definite symmetric matrix that can be 
obtained from an algebraic Riccati equation:

 ATP + PA − PBR−1BTP + Q = 0  (36)

Matrices Q and R were selected in an experimental way. 
The following values allowed for satisfying the inverted pendu-
lum control:
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 R = 56.25  (38)

Using the MATLAB, vector K was calculated as:

 K = [0.9428   5.0890   1.5597   1.0264]  (39)

With formulas (16), (17), (18), (19) it was possible to obtain 
a plot of the poles of the inverted pendulum system (fig. 4). It 
can be seen that some of the poles are outside of the circle with 
a radius of 1 and a center at (0, 0), which confirms that the 
inverted pendulum is an unstable system.

Continuing the calculations in the MATLAB, the system with 
the inverted pendulum can be closed together with the appro-
priate controller. The figure 5 shows a plot of the poles of a clo-
sed system. This time, all poles are inside a circle with a radius 
of 1 and a center at (0, 0). This means that the inverted pen-
dulum system has become stable.

Fig. 3. Block diagram of the inverted pendulum system
Rys. 3. Schemat blokowy układu regulacji wahadłem odwróconym
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4. Simulation and experimental results

The parameters of the inverted pendulum used in the simula-
tion and experiment were as follows:

M = 0.548 kg – mass of the cart,
m = 0.11 kg – mass of the pendulum,
g = 9.80 m/s2 – standard gravity,
l = 0.1436 m – half the length of the pendulum,
b = 1.5 kg/s – coefficient of friction,
I0 = 0.0023 kg·m2 – moment of inertia of the pendulum.

Firstly, the simulation was performed in the MATLAB/
Simulink environment. The implementation of the simulation 
is shown in figure 6. Both controllers are located in the middle 
of the figure. Using the switch block it was possible to control 
the choice of the regulator used in the simulation.

The results of the simulations are shown on figures 7 (the 
LQR version) and 8 (the adaptive version). It can be seen that 
the pendulum was held vertically upwards in both simulations.

Fig. 4. The inverted pendulum open system poles
Rys. 4. Bieguny systemu otwartego wahadła odwróconego

Fig. 5. The inverted pendulum closed system poles
Rys. 5. Bieguny systemu zamkniętego wahadła odwróconego

Fig. 7. Pendulum angle (LQR) during the simulation
Rys. 7. Kąt wychylenia wahadła (LQR) – symulacja

Fig. 6. Simulation of the inverted pendulum system
Rys. 6. Symulacja układu z wahadłem odwróconym
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The cost function was used to calculate the efficiency of both 
controllers. For this purpose, the most popular indicator was 
used – the Integral Square Error cost function:

 
( ) 2

0
nI E t dt

∞

 =  ∫  (40)

The results of the Integral Square Error cost function for 
both controllers are shown in table 1.

Tab. 1. Integral indexes – steady states
Tab. 1. Wskaźniki całkowe – stany ustalone

Integral indexes

LQR 0.0527

Adaptive with LQR 0.0507

The first implementation of controllers was carried out in 
the MATLAB/Simulink, because this environment is more 
friendly when debugging. If everything works correctly then 
a second implementation can be carried out on the PLC. Due 
to the fact that the Simulink diagrams are more readable than 
the source code written for the PLC, in the further part of the 
article the implementation of individual controllers is illustra-
ted using diagrams from Simulink.

Fig. 8. Pendulum angle (adaptive) during the simulation
Rys. 8. Kąt wychylenia wahadła (regulator adaptacyjny) – symulacja

Tab. 2. ILC 350 PN – specifications [21]
Tab. 2. ILC 350 PN – specyfikacja [21]

Processor 400 MHz

Speed
0.5 ms

for 1 K instructions

Shortest cycle time 1 ms

Program memory
1 MB,

85 K instructions in IL

Data memory 2 MB

Memory for retentive data 64 KB NVRAM

Number of control tasks 16

Fig. 9. Implementation of the LQR controller for the inverted pendulum in Simulink
Rys. 9. Implementacja regulatora LQR dla wahadła odwróconego w Simulinku

The final experiments were performed using the PLC con-
troller – ILC 350 PN made by Phoenix Contact company 
[18]. In order to prepare the system, the PLC controller was 
connected to the power interface through digital input/out-
put modules, which were connected to the central unit. The 
following modules were used: IB IL INC-IN-PAC (incremen-
tal encoder support – two pieces – one for the cart and one 
for the pendulum) [9] and IB IL PWM/2-PAC (PWM signal 
generation) [10]. The most important specifications about 
the PLC have been collected in the table 2.

In the first case the LQR controller was used on the inver-
ted pendulum system. The implementation of this controller 
is shown in figure 9. The LQR controller is located on the 
left side of the diagram. This is a block called Gain that 
multiplies the input by a matrix K. All four states of the 
system are brought to it: the position of the pendulum, the 
speed of the pendulum, the position of the cart and the 
speed of the cart. The calculated control is fed to the block 
with saturation – it is designed to prevent engine damage. In 
addition, virtual limit sensors have been introduced to pre-
vent the cart from colliding with the rail edges. The experi-
ment was performed on the PLC controller. The algorithm 
operated in the 10 ms interval with the priority set to 0.

The results of the first experiment are shown in figure 
10. The pendulum was initially at the upper balance point. 
It does not fall down and maintains its vertical upright 
position. 

In the second experiment, external disturbances were 
introduced – gentle prodding of the pendulum with a hand. 
Results are shown in figure 11. It can be seen on the chart 
that the pendulum is initially in the set position. However, 
a disturbance has been introduced. The system returns to 
the set state very quickly.
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In the second case, the adaptive controller with an additional 
LQR module was used. The implementation of this controller is 
shown in figure 12. The adaptive controller is located in the top 
left corner of the diagram with the LQR part in the bottom left 
corner (in the same place as in fig. 9). The adaptive controller is 
in the block called adaptacja. Only two states of the system are 
brought to it: the position of the pendulum and the speed of the 

Fig. 10. Pendulum angle (LQR) during the first experiment
Rys. 10. Kąt wychylenia wahadła (LQR) – pierwszy eksperyment

Fig. 13. Pendulum angle (adaptive) during the first experiment
Rys. 13. Kąt wychylenia wahadła (regulator adaptacyjny) – pierwszy 
eksperyment

Fig. 11. Pendulum angle (LQR) during the second experiment
Rys. 11. Kąt wychylenia wahadła (LQR) – drugi eksperyment

Fig. 14. Pendulum angle (adaptive) during the second experiment
Rys. 14. Kąt wychylenia wahadła (regulator adaptacyjny) – drugi 
eksperyment

Fig. 12. Implementation of the adaptive controller with additional LQR module for the inverted pendulum in Simulink
Rys. 12. Implementacja regulatora adaptacyjnego z dodatkowym modułem LQR dla wahadła odwróconego w Simulinku

pendulum. The calculated control is combined with the calcu-
lations from the LQR controller and then fed to the block with 
saturation. The saturation block is designed to prevent engine 
damage. In addition, virtual limit sensors have been introduced 
to prevent the cart from colliding with the rail edges. The exper-
iment was also performed on the PLC controller. The algorithm 
operated in the 10 ms interval with the priority set to 0.
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The results of the first experiment are shown in figure 13. 
The pendulum was initially at the upper balance point and it 
does not fall down and maintains its vertical upright position.

In the second experiment, external disturbances were introdu-
ced – gentle prodding of the pendulum with a hand. The results 
are shown in figure 14. It can be seen on the chart that the pen-
dulum is initially in the set position. However, a disturbance has 
been introduced. The system returns to the set state very quic-
kly and more smoothly than in the system with the independent 
LQR regulator. The results of the Integral Square Error cost 
function for both controllers (40) are shown in tables 3 and 4.

Tab. 3. Integral indexes – steady states
Tab. 3. Wskaźniki całkowe – stany ustalone

Integral indexes

LQR 0.0001662

Adaptive with LQR 0.0001214

Tab. 4. Integral indexes – external disturbances
Tab. 4. Wskaźniki całkowe – zewnętrzne zakłócenia

Integral indexes

LQR 0.00443

Adaptive with LQR 0.004195

5. Conclusion

The adaptive controller was implemented for the purpose of 
this article. It is one of the advanced algorithms. It takes the 
position of the pendulum at the entrance. This means that 
the second one was needed to control the cart. It was decided 
that the LQR controller must be used for this purpose. The 
adaptive version only required knowledge of the pendulum’s 
position. The independent LQR controller was used as a refe-
rence point for comparison. That particular controller version 
is characterized by the presence of only one control block, but 
the position of both the cart and the pendulum must be iden-
tified. The knowledge of the speed of the pendulum and the 
cart is also necessary. Therefore it was necessary to recreate 
the unknown variables.

After completing the experiments, the Integral Square Error 
cost function was used to compare the performance of the con-
trollers. It turned out that the adaptive version works a little 
bit better than the independent LQR. In connection with the 
results, it can be concluded that it is better to use an adaptive 
controller. However, it should be remembered that its compu-
tational complexity is higher. Therefore, one should consider 
what is more important – the simplicity of the algorithm or the 
better quality of the controller.
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Streszczenie: Odwrócone wahadło jest niestabilnym systemem o nieliniowej dynamice. Zadanie 
sterowania wahadłem odwróconym jest trudne, dlatego też układ ten przez lata stał się jednym 
z najważniejszych systemów, na których testowane są wszelkiego rodzaju regulatory. Celem 
sterowania systemem jest ustabilizowanie wahadła odwróconego w pozycji pionowo skierowanej 
ku górze. W artykule zaproponowano nowy algorytm adaptacyjny dla wahadła, będący kombinacją 
regulatora LQR oraz regulatora nieliniowego bazującego na twierdzeniu Lapunova. Oba moduły są 
połączone za pomocą dwupętlowej konstrukcji równoległej. Nowo zaprojektowany regulator został 
przetestowany eksperymentalnie i porównany z niezależnym modułem LQR. 
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