Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper evaluates the effect of the value of the negative logarithm of the hydrogen ion concentration in solution, denoted as pH, on the wear of materials used for elements working in the soil mass. Three types of materials with different chemical composition and manufacturing technology were analyzed. The study was carried out under laboratory conditions using the "spinning bowl" method. Low-alloy martensitic steel, boron-containing wear-resistant steel, and Fe-Cr-Mn-containing surfacing applied to martensitic steel were tested. Soil pH was found to have a significant effect on the wear pattern of the materials tested. The greatest wear was found in acidic soils with a pH lower than 5, and it was 30-40% greater, depending on the type of material, with respect to soil with a pH above 6.8. The greatest destructive effect was found for low-alloy martensitic steel containing "promoters" of hydrogen penetration. The ways in which the surface is used depending on the pH of the treated soil are described. Hydrogen wear is revealed by decohesion due to weakening of the structural bond of the material. The stages of the process of destructive hydrogen action are defined.
Wydawca
Rocznik
Tom
Strony
269--279
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- The Faculty of Technical Sciences, The University of Warmia And Mazury in Olsztyn, M. Oczapowskiego 11, 10-719 Olsztyn. Poland
autor
- The Faculty of Technical Sciences, The University of Warmia And Mazury in Olsztyn, M. Oczapowskiego 11, 10-719 Olsztyn. Poland
autor
- The Faculty of Technical Sciences, The University of Warmia And Mazury in Olsztyn, M. Oczapowskiego 11, 10-719 Olsztyn. Poland
Bibliografia
- 1. Dong, C.F., Liu, Z.Y., Li, X.G., Cheng, Y.F. (2009). Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. International journal of hydrogen energy, 34(24), 9879-9884.
- 2. Ghosh, G., Rostron, P., Garg, R., Panday, A. (2018). Hydrogen induced cracking of pipeline and pres- sure vessel steels: A review. Engineering Fracture Mechanics, 199, 609-618.
- 3. Hirth, J.P. (1980). Effects of hydrogen on the properties of iron and steel. Metallurgical Transactions A, 11(6), 861-890.
- 4. Kostencki, P., Stawicki, T., Królicka, A. (2021). Wear of the working parts of agricultural tools in the context of the mass of chemical elements introduced into soil during its cultivation. International Soil and Water Conservation Research, 9(2), 229-240.
- 5. Królicka, A., Szczepański, Ł., Konat, Ł., Stawicki, T., Kostencki, P. (2020). The influence of microstructure on abrasive wear micro-mechanisms of the claddings produced by welding used in agricultural soil. Materials, 13(8), 1920.
- 6. Lemecha, M., Napiórkowski, J., Konat, Ł. (2017). Analysis of wear and tear of working elements with a replaceable cutting edge in an abrasive soil mass. Tribologia.
- 7. Li, X., Liu, J., Sun, J., Lin, X., Li, C., & Cao, N. (2019). Effect of microstructural aspects in the heat- affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: Part I. In acidic soil environment. Corrosion Science, 160, 108167.
- 8. Ligier, K., Napiórkowski, J., & Lemecha, M. (2020). Effect of Abrasive Soil Mass Grain Size on the Steel Wear Process. Tribology in Industry, 42(2).
- 9. Louthan Jr M.R., in: I.M. Bernstein, A.W. Thompson (Eds.), Hydrogen in Metals, ASM, Metals Park, OH, 1974, p. 53.
- 10. Mendez, P. F., Barnes, N., Bell, K., Borle, S. D., Gajapathi, S. S., Guest, S. D., & Wood, G. (2014). Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 16(1), 4-25.
- 11. Napiórkowski, J., & Lemecha, M. (2018). The Effect of Abrasive Soil Mass Density on the Tribological Properties of Steel. Tribologia.
- 12. Natsis, A., Petropoulos, G., & Pandazaras, C. (2008). Influence of local soil conditions on mouldboard ploughshare abrasive wear. Tribology International, 41(3), 151-157.
- 13. Oriani, R. A. (1978). Hydrogen embrittlement of steels. Anual review of materials science, 8(1), 327-357.
- 14. Sergeev, N.N., Sergeev, A.N., Kutepov, S.N., Kolmakov, A.G., Gvozdev, A.E. (2019). Mechanism of the hydrogen cracking of metals and alloys, part I. Inorganic Materials: Applied Research, 10(1), 24-31.
- 15. Sörensen, S.P.L. (1909). Ergänzung zu der Abhandlung: Enzymstudien II: Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem. Z., 22, 352-356.
- 16. Stabryła, J. (2007). Research on the degradation process of agricultural tools in soil. Problemy Eksploatacji, 223-232.
- 17. Tiwari, G.P., Bose, A., Chakravartty, J.K., Wadekar, S.L., Totlani, M.K., Arya, R.N., Fotedar, R.K.(2000). A study of internal hydrogen embrittlement of steels. Materials Science and Engineering: A, 286(2), 269-281.
- 18. Troiano, A.R. (1960). The role of hydrogen and other interstitials in the mechanical behavior of metals. trans. ASM, 52, 54-80.
- 19. Wang, Q., & Li, X. (2010). Effects of Nb, V, and W on microstructure and abrasion resistance of Fe- Cr-C hardfacing alloys. Welding Journal, 89(6), 133-139.
- 20. Wang, Z., Xie, F., Wang, D., & Liu, J. (2021). Effect of applied potential on stress corrosion cracking behavior of X80 steel in alkaline soil simulated solution with sulfate-reducing bacteria. Engineering Failure Analysis, 121, 105109.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5277fcb-3a8a-4867-afd2-b3941f6aa8cd