Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Osmoza prosta jako skuteczna metoda zatężania roztworów kationowych substancji powierzchniowo czynnych
Języki publikacji
Abstrakty
The paper presents experimental results on the effectiveness of forward osmosis (FO) for the recovery and concentration of cationic surfactants (quaternary ammonium salts) from solutions with a wide range of concentrations (50-1000 mg/L). The membrane process ensured an almost 100% separation of cationic surfactants and an effective concentration of the solution components without a leakage into the receiving solution. It has been shown that FO is a membrane technique that allows achieving the goals of a circular economy through an effective concentration and recovery of the compounds and water from the purified solutions.
W pracy przedstawiono wyniki badań dotyczących skuteczności osmozy prostej (FO) do odzyskiwania i zatężania kationowych substancji powierzchniowo czynnych (czwartorzędowych soli amoniowych) z roztworów o szerokim zakresie stężeń (50-1000 mg/L). Proces membranowy zapewniał niemal 100% separację kationowych substancji powierzchniowo czynnych oraz skuteczne zatężenie składników roztworu bez ich przecieku do roztworu odbierającego. Wykazano, że FO jest techniką membranową pozwalająca na osiągnięcie celów gospodarki o obiegu zamkniętym, poprzez skuteczne zatężanie oraz odzyskiwanie składników oczyszczanego roztworu i wody.
Wydawca
Czasopismo
Rocznik
Tom
Strony
31--38
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology Faculty of Environmental Engineering, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wroclaw University of Science and Technology Faculty of Environmental Engineering, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Aende, A., Gardy, J., Hassanpour, A. 2020. "Seawater desalination: a review of forward osmosis technique, its challenges, and future prospects". Processes, 8 (8), 901. https://doi.org/10.3390/pr8080901.
- [2] Ahmadizadeh, R., Shokrollahzadeh, S., Latifi, S. M. 2019. "Mass transfer study in saline water treatment by forward osmosis process". Advances in Environmental Technology (3): 141-148. https://doi.org/10.22104/AET.2020.3946.1195.
- [3] Arslan, A., Topkaya, E., Bingöl, D., Veli, S. 2018. "Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach". Sustainable Environment Research, 28 (2): 65-71. https://doi.org/10.1016/j.serj.2017.11.002.
- [4] Bahoosh, M., Shokrollahzadeh, S., Kashi, E., Rosyami, K. 2021. "Simulation of forward osmosis process: modification of mass transfer coefficient and osmotic pressure equations". Journal of Environmental Chemical Engineering, 9 (6), 106698. https://doi.org/10.1016/j.jece.2021.106698.
- [5] Barambu, N. F., Peter, D., Yusoff, M. H. D., Bilad, M. R., Shamsuddin, N., Marbelia, L., Nordin, N. A. H., Jaafar, J. 2020. "Detergent and water recovery from laundry wastewater using tilted panel membrane filtration system". Membranes, 10 (10): 260-269. https://doi.org/10.3390/membranes10100260.
- [6] Başar, C. A. 2018. "A mathematical model for adsorption of surfactant onto powdered activated carbon. Iranian". Journal of Chemistry and Chemical Engineering, 37(6): 125-131. https://doi.org/10.30492/ijcce.2018.31721.
- [7] Bhinder, A., Shabani, S., Sadrzadeh, M. 2017. Effect of Internal and External Concentration Polarizations on the Performance of Forward Osmosis Process. [In:] Du, H., Thompson, A., Wang, X. Osmotically driven membrane processes - approach, development and current status. InTech. https://doi.org/10.5772/intechopen.
- [8] Bindes, M. M., Franco Jr., M. R. 2015. "Surfactant removal from aqueous solutions onto activated carbon using UV spectroscopy". Desalination and Water Treatment, 56 (11):2890-2895. https://doi.org/10.1080/19443994.2014.963157.
- [9] Blandin, G., Verliefde, A. R. D., Comas, J., Rodriguez-Roda, I., LeClech, P. 2016. "Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review". Membranes, 6(3), 37. https://doi.org/10.3390/membranes6030037.
- [10] Boussu, K., Kindts, C., Vandecasteele, C., Van der Bruggen, B. 2007. "Surfactant fouling of nanofiltration membranes: measurements and mechanisms". ChemPhysChem, 8 (12):1836-1845. https://doi.org/10.1002/cphc.200700236.
- [11] Chaoui, I., Abderafi, S., Vaudreuil, S., Bounahmidi, T. 2019. "Water desalination by forward osmosis: draw solutes and recovery methods review". Environmental Technology Reviews, 8 (1) 25-46. https://doi.org/10.1080/21622515.2019.1623324
- [12] Chun, Y., Mulcahy, D., Zou, L., Kim, I.S. 2017. "A Short Review of Membrane Fouling in Forward Osmosis". Processes. Membranes, 7 (30). https://doi.org/10.3390/membranes7020030.
- [13] Fathi, M. B., Fathi, M., Alamdari, E. K., Alorro, R. D. 2017. "Mechanism and equilibrium modeling of Re and Mo adsorption on a gel type strong base anion resin". Russian Journal of Applied Chemistry, 90 (9): 1504-1513. https://doi.org/10.1134/S1070427217080208.
- [14] Giagnorio, M., Ricceri, F., Riraferri, A. 2019. "Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery". Water Research, 153, 134-143. https://doi.org/10.1016/j.watres.2019.01.014.
- [15] Grzegorzek, M., Majewska-Nowak, K. 2018. "The use of micellar-enhanced ultrafiltration (MEUF) for fluoride removalfrom aqueous solutions". Separation and Purification Technology (195): 1-11. https://doi.org/10.1016/j.seppur.2017.11.022
- [16] Hajaya, M. G., Tezel, U., Pavlostathis, S. G. 2011. "Effect of temperature and benzalkonium chloride on nitrate reduction". Bioresource Technology, 103 (8) :5039-5047. https://doi.org/10.1016/j.biortech.2011.01.080.
- [17] Haupt, A., Lerch, A. 2018. „Forward osmosis application in manufacturing industries: a short review". Membranes, 8 (3), 47. https://doi.org/10.3390/membranes8030047
- [18] Hickenbottom, K. L., Hancock, N. T., Hutchings, N. R., Appleto, E. W., Beaudry, E. G., Xu, P., Cath, T. Y. 2013. "Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations". Desalination, (312): 60-66. https://doi.org/10.1016/j.desal.2012.05.037.
- [19] Hu B., Jiang M., Zhao S., Ji X., Shu Q., Tian B., He T., Zhang L. 2019. "Biogas slurry as draw solution of forward osmosis process to extract clean water from micro-polluted water for hydroponic cultivation". Journal of Membrane Science (576): 88-95. https://doi.org/10.1016/j.memsci.2019.01.029.
- [20] Huang, J. H., Zhao, Y., Zeng, G. M., Peng, L., Li, X., Liu, L. X., Li, F., Shi, L. X., Yuan, F. 2015. "Micellar-enhanced ultrafiltration for the solubilization of various phenolic compounds with different surfactants". Water Science & Technology, 72 (4): 623-631. https://doi.org/10.2166/wst.2015.257.
- [21] Ibraheem, B. M., Aani, S. A., Alsarayreh, A. A., Alsalhy, Q. F., Salih, I. K. 2023. "Forward osmosis membrane: review of fabrication, modification, challenges and potential". Membranes, 13 (4), 379. https://doi.org/10.3390/membranes13040379.
- [22] Internet page of Water conditioning and purification international magazine, The Potential for Industrial Wastewater Reuse. https://wcp-online.com/2020/12/15/the-potential-for-industrial-wastewater-reuse/ (access: 9 Nov. 2023).
- [23] Iskander, S. M., Zou, S., Brazil, B., Novak, J. T., He, Z. 2017. "Energy consumption by forward osmosis treatment of landfill leachate for water recovery". Waste Management (63 ):284-291. https://doi.org/10.1016/j.wasman.2017.03.026.
- [24] Karamov, E. V., Larichev, V. F., Kornilaeva, G. V., Fedyakina, I. T., Turgiev, A. S., Shibaev, A. V., Molchanov, V. S., Philippova, O. E., Khokhlov, A. R. 2022. „Cationic surfactants as disinfectants against SARS-CoV-2“. International Journal of Molecular Science, 12, 6645. https://doi.org/10.3390/ijms23126645.3.
- [25] Kaya, J., Dayanir, S. 2020. "Application of nanofiltration and reverse osmosis for treatment and reuse of laundry wastewater". Journal of Environmental Health Science and Engineering, 18 (2): 699-709. https://doi.org/10.1007/s40201-020-00496-7.
- [26] Khan, R., Inam, M. A., Iqbal, M. M., Shoaib, M., Park, D. R., Lee, K. H., Shin, S., Khan, S., Yeom, I. T. 2019. "Removal of ZnO nanoparticles from natural waters by coagulation-flocculation process: influence of surfactant type on aggregation". Dissolution and Colloidal Stability, Sustainability, 11 (1): 17-39. https://doi.org/10.3390/su11010017.
- [27] Klimonda, A., Kowalska, I. 2019. "Application of polymeric membranes for the purification of solutions containing cationic surfactants". Water Science and Technology, 79 (7):1241-1252. https://doi.org/10.2166/wst.2019.115.
- [28] Klimonda, A., Kowalska, I. 2021. "Sequential process: membrane filtration and ion exchange as an effective method for water solution purification containing cationic surfactants". Desalination and Water Treatment, 214, 232-241. https://doi.org/10.5004/dwt.2021.26663.
- [29] Kulthe, S., Choudhari, Y. M., Inamdar, N. N., Mourya, V. 2012. "Polymeric micelles: authoritative aspects for drug delivery". Designed Monomers and Polymers, 15 (5):465-521. https://doi.org/10.1080/1385772X.2012.688328
- [30] Kumar, S., Bhattarai, A., Chatterjee, S. 2013. "Applications of surfactants in modern science and technology". Modern Trends in Science and Technology, 147-158.
- [31] Mohammadifakhr, M., de Grooth, J., Roesink, H. D. W., Kamperman, A. J. B. 2020. „Forward osmosis: a critical review. Processes“.8 (4), 404. https://doi.org/10.3390/pr8040404.
- [32] Mondal, B., Adak, A., Datta, P. 2021. "Integrated UV-H2O2 and biological treatment processes for the removal of cationic surfactant". Journal of Environmental Engineering and Science, 16 (2): 85-93. https://doi.org/10.1680/jenes.20.00027.
- [33] Nascimento, C. O. C., Veit, M. T., Palácio, S. M., Gonçalves, G. C., Fagundes-Klen, M. R. 2019. "Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater". Hindawi International Journal of Chemical Engineering, 324710. https://doi.org/10.1155/2019/8324710.
- [34] Ogilvie, B. H., Solis-Leal, A., Lopez, J. B., Poole, B. D., Robinson, R. A., Berges, B. K. 2021. "Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2". Journal of Hospital Infection, 108, 142-145. https://doi.org/10.1016/j.jhin.2020.11.023.
- [35] Pisárčik, M., Devínsky, F., Pupák, M. 2015. "Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching". Open Chemistry (13):922-931. https://doi.org/10.1515/chem-2015-0103
- [36] Pugh, R. J. 2016. Bubble and Foam Chemistry. Cambridge University Press. https://doi.org/10.1017/CBO9781316106938.
- [37] Rastogi, N. K. 2016. "Opportunities and challenges in application of forward osmosis in food processing". Critical Reviews in Food Science and Nutrition (56): 266-291. https://doi.org/10.1080/10408398.2012.724734.
- [38] Shaban, S.M., Kang, J., Kim, D-H. 2020. "Surfactants: recent advances and their applications". Composites Communications, 22, 100537. https://doi.org/10.1016/j.coco.2020.100537.
- [39] Singh, S.K., Sharma, C., Maiti, A. 2021. "A comprehensive review of standalone and hybrid forward osmosis for water treatment: membranes and recovery strategies of draw solutions". Journal of Environmental Chemical Engineering, 9 (4), 105473. https://doi.org/10.1016/j.jece.2021.105473.
- [40] Specification data sheet of BAC surfactant (MP Biomedicals).
- [41] Specification data sheet of CTAB surfactant (Sigma-Aldrich).
- [42] Sung-Jo, K., Kook, S., O’Rourke, B.E., Lee, J., Hwang, M., Kobayashi, Y., Suzuki, R., Kim, I.S. 2017. "Characterization of pore size distribution (PSD) in cellulose triacetate (CTA) and polyamide (PA) thin active layers by positron annihilation lifetime spectroscopy (PALS) and fractional rejection (FR) method". Journal of Membrane Science( 527): 143-151. https://doi.org/10.1016/j.memsci.2016.12.064.
- [43] Sutterlin, H., Alexy, R., Coker, A., Kummerer, K. 2008. "Mixtures of quaternary ammonium compounds and anionic organic compounds in the aquatic environment: elimination and biodegradability in the closed bottle test monitored by LC-MS/MS". Chemosphere, 72 (3): 479-484. https://doi.org/10.1016/j.chemosphere.2008.03.008.
- [44] Wu, C., Mouri, H., Chen, S., Zhang, D., Koga, M., Kobayashi, J. 2016. "Removal of trace-amount mercury from wastewater by forward osmosis". Journal of Water Process Engineering (14): 108-116. https://doi.org/10.1016/j.jwpe.2016.10.010.
- [45] Zhao, S., Gao, B., Yue, Q., Sho,n H. K. 2015. "The performance of forward osmosis process in treating the surfactant wastewater: the rejection of surfactant, water flux and physical cleaning effectiveness". Chemical Engineering Journal, 281 (1): 688-695. https://doi.org/10.1016/j.cej.2015.07.003.
- [46] Zhao, Y., Duan, L., Liu, X., Song, Y. 2022. "Forward osmosis technology and its application on microbial fuel cells: a review". Membranes, 12 (12), 1254. https://doi.org/10.3390/membranes12121254.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5203f49-9cd6-42dd-aae9-c8314f18ad4c