PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selecting operating parameters of an electrostatic precipitator decreasing emission of solid fuels fly ashes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dobór parametrów eksploatacyjnych elektrofiltru obniżającego niską emisję pyłów pochodzących ze spalania paliw stałych
Języki publikacji
EN PL
Abstrakty
EN
The article presents the results of research aimed at developing the construction of an ESP (electrostatic precipitator), as well as the performance and selection of operating parameters of the ESP for household applications. The object of the experiment was the ESP prototype, designed and made by the authors, assigned to be placed in a gas pass of a detached house. A simulation of dustiness caused by burning solid fuels has been done. The experiment has been carried out for two different degrees of dust concentration at the ESP inlet, by controlling the given voltage. The results proved that the proposed constructional solution of the ESP significantly limits low emission PM2.5 and PM10 dust emitted during the process of burning solid fuels: coal and/or biomass in boilers and fireplaces used in households or in small local boiler houses.
PL
W artykule przedstawiono wyniki badań, mających na celu opracowanie konstrukcji, wykonanie oraz dobór parametrów eksploatacyjnych elektrofiltru do zastosowań w gospodarstwach domowych. Obiektem badań był opracowany i wykonany przez autorów prototyp elektrofiltru przeznaczony do montażu w kanale spalinowym budynku jednorodzinnego. Istotnym problemem jest dobór odpowiedniej elektrody ulotowej. Zasymulowano zapylenie powstające na skutek spalania paliw stałych. Badania przeprowadzono dla dwóch różnych stężeń pyłów na wlocie do elektrofiltru, regulując podawane napięcie. Uzyskane wyniki wykazały, że przyjęte rozwiązanie konstrukcyjne elektrofiltru umożliwia znaczne ograniczenie niskiej emisji pyłów PM2,5 i PM10 emitowanych w procesach spalania paliw stałych: węgla kamiennego i/lub biomasy w kotłach lub kominkach stosowanych w gospodarstwach domowych lub małych kotłowniach lokalnych.
Rocznik
Strony
495--501
Opis fizyczny
Bibliogr. 21 poz., rys. kolor.
Twórcy
autor
  • AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland Faculty of Mechanical Engineering and Robotics
  • AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland Faculty of Mechanical Engineering and Robotics
autor
  • AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland Faculty of Mechanical Engineering and Robotics
autor
  • AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland Faculty of Mechanical Engineering and Robotics
Bibliografia
  • 1. Barranco R, Gong M, Thompson A, Michael Cloke M, Hanson S, Will Gibb W, Lester E. The impact of fly ash resistivity and carbon content on electrostatic precipitator performance. Fuel 2007; 86: 2521–2527, https://doi.org/10.1016/j.fuel.2007.02.022.
  • 2. Böttner C U. The role of the space charge density in particulate processes in the example of the electrostatic precipitator. Powder Technology 2003; 135–136: 285–294, https://doi.org/10.1016/j.powtec.2003.08.020.
  • 3. Chanem O, Perez L, Knuli N, Medina S. The hidden economic burden of air pollution-related morbidity: evidence from the Aphekom project. Eur .J Health Econ. 2016; 17: 1101, https://doi.org/10.1007/s10198-015-0748-z.
  • 4. Chłopek Z. Testing of hazards to the environment caused by particulate matter during use of vehicles. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2012; 14 (2): 160–170.
  • 5. Chłopek Z Jakubowski A. The examination of the reduction of particulate matter emission from motor vehicle braking systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2010; 4 (48): 29–36.
  • 6. Commission Regulation (EU) 2015/1189 of 28 April 2015 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for solid fuel boilers, J L 193, 2015; 100–114.
  • 7. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ L 152, 2008; 1–44.
  • 8. European Environment Agency. Air quality in Europe 2017 report, EEA Report No 13/2017 Publications Office of the European Union Luxembourg 2017; ISBN 978-92-9213-920-9 doi:10.2800/358908.
  • 9. Fischer T, Grass N, Zouzou N, Dăscălescu L, Greil R, Hopf N. Smart home precipitator for biomass-furnaces: Design considerations on a small scale electrostatic precipitator. Annual Meeting. IEEE Transactions on Industry Applications 2014; 50: 2219-2224
  • 10. Hartmann H, Turowski P, Kiener S. Electrostatic procipitators for small-scale wodo combustion systems – Results from lab-and field tests.Central Europe Biomass Conference (CEBC), 26.-28. January 2011 Graz. IEA Task32-Workshop: "Fine particulate emissions from small scale biomass furnaces".
  • 11. Jędrusik M, Świerczok A. The correlation between corona current distribution and collection of fine particles in a laboratory-scale electrostatic precipitator. Journal of Electrostatics, v. 71, 2013; 3: 199–203
  • 12. Machnik R, Karwat B, Nocuń M, Niedźwiedzki J. Wpływ fizykochemicznych właściwości popiołów lotnych ze spalania węgli na proces elektrostatycznego odpylania spalin. Przemysł Chemiczny 2015; 94(9): 1530–1533.
  • 13. Machnik R, Nocuń M. Effect of anti-corrosion coatings of corona electrodes on selected operating parameters of industrial electrostatic precipitators. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16(1): 56–60.
  • 14. Mocek P, Zamiar R, Jachimczyk R, Gowarzewski R, Świądrowski J, Gil I, Stańczyk K. Selected issues of operating 3 MW underground coal gasification installation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (3): 427–434, https://doi.org/10.17531/ein.2015.3.14.
  • 15. Parker K. Electrical operation of electrostatic precipitators. London, The Institution of Electrical Engineers 2003.
  • 16. Pascal M, Medina S. Résumé des résultats du projet Aphekom 2008-2011. Des clefs pour mieux comprendre les impacts de la pollution atmosphérique urbaine sur la santé en Europe. Saint-Maurice: Institut de veille sanitaire; 2012; 6 p. Disponible à partir de l'URL: http://www.invs.sante.fr.
  • 17. Popa G N, Dăscălescu L. Variable Cross-Section Cylinder-Type Corona and Combined Corona–Dielectric Barrier Discharge Precipitators for Fly-Ash Particles. Particulate Science and Technology: An International Journal, Taylor & Francis 2014: 445-450, https://doi.org/10.1080/02726351.2013.878773.
  • 18. Ruttanachot Ch, Tirawanichakul Y, Tekasakul P. Application of electrostatic precipitator in collection of smoke aerosol particles from wood combustion. Aerosol Air Qual. Res. 2011; 11: 90-98, https://doi.org/10.4209/aaqr.2010.08.0068.
  • 19. Vicente E D, Alves C A. An overview of particulate emissions from residential biomass combustion. Atmospheric Research 2018; 199: 159–185, https://doi.org/10.1016/j.atmosres.2017.08.027.
  • 20. Wiinikka H, Grönberg C, Boman C. Emissions of heavy metals during fixed-bed combustion of six biomass fuels. Energy Fuel 2013; 27: 1073-1080, https://doi.org/10.1021/ef3011146.
  • 21. Zhang Y, Obrist D, Zielinska B, Gertler A. Particulate emissions from different types of biomass burning. Atmos. Environ. 2013; 72: 27-35, https://doi.org/10.1016/j.atmosenv.2013.02.026.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a51e822d-4a55-4817-adc8-b8bb734434e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.