Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The removal of methyl violet dye through a photocatalytic process has been successfully carried out. This study aimed to evaluate the photocatalytic efficiency of TiO2/zeolite catalysts in degrading methyl violet dye. Zeolites were synthesized from silica and aluminum sources derived from muscovite raw materials using the hydrothermal method, resulting in two types of zeolites: cancrinite (CAN) in synthesis A and analcime (ANA) in synthesis B. The zeolites were combined with anatase-phase TiO2 to form photocatalysts, with XRD analysis confirming the cubic structure of analcime and hexagonal cancrinite in the anatase phase. FTIR spectra showed sharp bands in the 468–1005 cm-1 wave number range. SEM analysis showed that TiO2/analcime exhibited a hexagonal morphology with a crystal size of 10.58 μm, while TiO2/cancrinite had a rod-shaped morphology with a crystal size of 21.3 μm. Surface area analysis showed that TiO2/ANA and TiO2/CAN had surface areas of 34.80 m2/g and 23.08 m2/g, respectively, with pore diameters > 2 nm, which confirmed their mesoporous nature based on the BJH method. UV-DRS analysis showed band gap energies of 3.13 eV for TiO2/ANA and 3.11 eV for TiO2/CAN. Photodegradation tests showed that the TiO2/ANA catalyst exhibited higher methyl violet degradation efficiency than TiO2/CAN. This study high-lighted the potential of TiO2/zeolite-based photocatalysts for effective treatment of dye-contaminated wastewater, contributing to environmental sustainability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
73--86
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
Bibliografia
- 1. Aichour, A., Djafer, K.H., and Zaghouane, B.H. (2021). Textile dyes removal from wastewater using recent promising composites: A review. Algerian Journal of Chemical Engineering 2: 49–65. https://doi.org/10.5281/zenodo.5451775
- 2. Alvand, M., Ma, Z., Kokate, R., Kumar, P.V., Pan, J., Amal, R., Lovell, E.C., and Jalili, A.R. (2024). Uncovering the role of vanadium-doped Ni2P for low concentration urea oxidation. Chemical Engineering Journal. 500: 157130. https://doi.org/10.1016/j.cej.2024.157130
- 3. Amin, I.I., Wahab, A. W., Mukti, R.R., and Taba, P. (2023). Synthesis and characterization of zeolite type ANA and CAN framework by hydrothermal method of Mesawa natural plagioclase feldspar. Applied Nanoscience. pages 1-10. https://doi.org/10.1007/s13204-022-02756-4
- 4. Berradi, M., Hsisou, Rachid, Khudhair, M., Assouag, M., Cherkaoui, O., Bachiri, A. E., and Harfi, A, E. (2019). Textile finishing dyes and their impact on aquatic environs: a review. Heliyon. 5: e02711. Pages1-11. https://doi.org/10.1016/j.heliyon.2019.e02711
- 5. Bouasla, C., Samar, M. E. H., and Ismail, F. (2010). Degradation of methyl violet 6B dye by the fenton process. Desalination 254. 35–41. https://doi.org/10.1016/j.desal.2009.12.017
- 6. Burhan, M., Wakil, M., and Ng, K.C. 2018. Energy distribution function based universal adsorption isotherm model for all types of isotherms. International Journal of Low-Carbon Technologies 13: 292–297. https://doi.org/10.1093/ijlct/cty031
- 7. Deng, Y., Flury, M., Harsh, J.B., Felmy, A.R., and Qafoku, O. (2006). Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants. Applied Geochemistry. 2049–2063. https://doi.org/10.1016/j.apgeochem.2006.06.019
- 8. Derbe, T., Temesgen, S., and Bitew M. (2021). A Short Review on Synthesis, Characterization, and Applications of Zeolites. Advances in Materials Science and Engineering. 6637898: 1–17. https://doi.org/10.1155/2021/6637898
- 9. Dey, A., Varagnolo, S., Power, N.P., Vangapally, N., Elias, Y., Damptey, L., Jaato, B.N., Gopalan, S., Golrokhi, Z., Sonar, P., Selvaraj, V., Aurbach, D., and Krishnamurthy, S. (2023). Doped MXenes—A new paradigm in 2D systems: Synthesis, properties and applications. Progress in Materials Science. 139: 101166 1–70. https://doi.org/10.1016/j.pmatsci.2023.101166
- 10. Dharma, H.N.C., Jaafar, J., and Widiastuti, N. (2022). A Review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes. 12: 345. https://doi.org/10.3390/membranes12030345
- 11. Doğaroğlu, Z.G., Uysal, Y., Demir, A., Makas, M.N., & Çaylalı, Z. (2023). Synthesis, characterization, and optimization of PVA/SA hydrogel functionalized with zeolite (clinoptilolite): Efficient and rapid color removal from complex textile effluents. Materials Chemistry and Physics, 295, 127090. https://doi.org/10.1016/j.matchemphys.2022.127090
- 12. Gadallah, T.A., S. Kato, S. Satokawa, T. Kojima. (2007). Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite, Solid State Sci. 9(8): 737–743. https://doi.org/10.1016/j.solidstatesciences.2007.05.012
- 13. Haleem, A., Ullah, M., Rehman, S., Shah, A., Farooq, M., Saeed, T., Ullah, I., and Li, H. (2024). In-depth photocatalytic degradation mechanism of the extensively used dyes malachite green, methylene blue, congo red, and Rhodamine B via covalent organic framework-based photocatalysts. Water 16, 1588. https://doi.org/10.3390/w16111588
- 14. Herrera, C.A.R., Cruz-Cruz, I., Cedeno, I.H.J., Romero, O.M., and Zuniga, A.E. (2021). Influence of the epoxy resin process parameters on the mechanical properties of produced bidirectional [±45°] carbon/epoxy woven composites. Polymers 13: 1273. https://doi.org/10.3390/polym13081273
- 15. Huang, C., Ding, Y., Chen, Y., Li, P., Zhu, S., and Shen, S. (2017). Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light. Journal of Environmental Sciences. 60, 61–69. https://doi.org/10.1016/j.jes.2017.06.041
- 16. Huayna, G., Laura, A., Churata, R., Lazo, L., Guzman, R., Ramos, P.G. and Rodeiguez J.M. (2024). Synthesis and characterization of a photocatalytic material from TiO2 nanoparticles supported on zeolite obtained from ignimbrite residue used in decolorization of methyl orange. Appl. Sci. 14: 3146. https://doi.org/10.3390/app14083146
- 17. Ifeanyi, M.S.A., Bilainu, O., and Yusuf, M.I. (2024). Effects of transition metal doping on the properties and catalytic performance of ZSM-5 zeolite catalyst on ethanol-to-hydrocarbons conversion. Fuel Communications. 18: 100101. 1–11. https://doi.org/10.1016/j.jfueco.2023.100101
- 18. Ihaddaden, S., Aberkane, D., Boukerroui, A., and Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering. 49: 102952. https://doi.org/10.1016/j.jwpe.2022.102852
- 19. Irodia, R., Ungureanu, C., Satulu, V., and Mindroiu, V.M. (2023). Photocatalyst Based on nanostructured TiO2 with improved photocatalytic and antibacterial properties. Materials. 16: 7509. 1–22. https://doi.org/10.3390/ma16247509
- 20. Isik, M. Z., Saleh, I., M’barek, E. Yabalak, N. Dizge and B. Deepanraj. (2022). Investigation of the adsorption performance of cationic and anionic dyes using hydrochared waste human hair. Biomass Conversion Biorefinery. 1–14. https://doi.org/10.1007/s13399-022-02582-2
- 21. Janek, M., Bugar, I., Lorenc, D., Szocs, V., Velic, D., Chorvat, D. (2009). Terahertz Time-Domain Spectroscopy of Selected Layered Silicates. Clays and Clay Minerals, 57(4): 416–424. https://doi.org/10.1346/CCMN.2009.0570402
- 22. Jeyasubramaniana, K., Hikku., G.S. and Krishna Sharma R. (2015). Photocatalytic degradation of methyl violet dye using zinc oxide nanoparticles prepared by a novel precipitation method and its anti-bacterial activities. Journal of Water Process Engineering 8, 35–44. https://doi.org/10.1016/j.jwpe.2015.08.007
- 23. Joseph, I. V., Doyle, A.M., Amedlous, A., Mintova, S., and Tosheva, L. (2022). Scalable solvent-free synthesis of aggregated nanosized single-phase cancrinite zeolite. Materials Today Communications. 32: 103879. 1–7. https://doi.org/10.1016/j.mtcomm.2022.103879
- 24. Karaman, O. Karaman, P.-L. Show, H. Karimi-Maleh and N. Zare. (2022). Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere. 290: 133346. https://doi.org/10.1016/j.chemosphere.2021.133346
- 25. Katwal, R. Kothari and D. Pathania. (2021). Chapter 10 - An overview on degradation kinetics of organic dyes by photocatalysis using nanostructured electrocatalyst. Delivering Low-Carbon Biofuels with Bioproduct Recovery. 195–213. https://doi.org/10.1016/B978-0-12-821841-9.00005-0
- 26. Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haeder, J.B., Xu, B., Johir, M.A.H., Karmakar, A.K., Zhou, J.L., Ahmed, M.B., Moni, M.A. (2020). Zeolite synthesis from low-cost materials and environmental applications. A review. Environmental Advances. 2: 100019. https://doi.org/10.1016/j.envadv.2020.100019
- 27. Kim, S.J., Kim, E.M., H.K. Jeon., S.B. Kale., J.Y. Choi., and J.H. Kim. (2022). Photoreactor-Initiated Acetaldehyde Conversion Rate of a TiO2-Surface--Treated Alumina Photocatalyst Prepared Using the Sol-Gel Method. Appl. Sci. 12: 5796. https://doi.org/10.3390/app12125796
- 28. Lee, M.G., Yi, G., Ahn, B.J., and Roddick, F. (2000). Conversion of Coal Fly Ash into Zeolite and Heavy Metal Removal Characteristics of the Products. Korean J. Chem. Eng., 17(3), 325–331. https://doi.org/10.1007/BF02699048
- 29. Li, S., Jia, S., Nagasaka, T., Bai, H. and Yang, L. (2023). CO2 adsorption properties of amine-modified zeolites synthesized using different types of solid waste. Sustainability. 5: 10144. 1–17. https://doi.org/10.3390/su151310144
- 30. Liu Y., and Pan, H. (2013). Hydrogen Storage Materials. New and Future Developments in Catalysis, Batteries, Hydrogen Storage and Fuel Cells. 377–405. https://doi.org/10.1016/B978-0-444-53880-2.00018-1
- 31. Ma, X., Yang, J., Ma, H., and Liu, C. (2016) Hydrothermal extraction of potassium from potassic quartz syenite and preparation of aluminum hydroxide. Int J Miner Process 147: 10–17. https://doi.org/10.1016/j.minpro.2015.12.007
- 32. Maj, I., and Matus, K. (2023). aluminosilicate clay minerals: kaolin, bentonite, and halloysite as fuel additives for thermal conversion of biomass and waste. A Review. Energies. 16: 4359. https://doi.org/10.3390/en16114359
- 33. Nikravesh, B., Shomalnasab, A., Nayyer, A., Aghababaei, N., Zarebi, R., and Ghanbaru, F. (2020). UV/Chlorine Process for dye degradation in aqueous solution: Mechanism, affecting factors, and toxicity evaluation for textile wastewater. Journal of Environmental Chemical Engineering. 8(5): 104244. https://doi.org/10.1016/j.jece.2020.104244
- 34. Novembre, D. and Gimeno, D. (2021). Synthesis and characterization of analcime (ANA) zeolite using a kaolinitic rock. Scientific Reports. 11:13373, 1–10. https://doi.org/10.1038/s41598-021-92862-0
- 35. Oliveira, R.de., and Sant’Ana, A.C. (2024). Crystal Violet degradation by visible light-driven AgNP/TiO2 hybrid photocatalyst tracked by SERRS spectroscopy. Vibrational Spectroscopy, 133: 103694. https://doi.org/10.1016/j.vibspec.2024.103694
- 36. Padma, C.M., Raja, D.H., and Davidson, D.J. (2023). Photodegradation of Methyl violet using Ag modified TiO2 nanotubes by UV and UV/H2O2, Chem. Phys. Impact 7: 100366. https://doi.org/10.1016/j.chphi.2023.100366
- 37. Pal, A., Jana, T.K., and Chatterjee, K. (2016). Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation. Materials Research Bulletin. 76, 353–357. https://doi.org/10.1016/j.mattersbull.2015.12.040
- 38. Perwez, M., Fatima, H., Arshad, M., V. Meena, and B. Ahmad. (2022). Magnetic iron oxide nanosorbents effective in dye removal. Int. Journal of Environmental Science and Technology. 20(5), 1–18. https://doi.org/10.1007/s13762-022-04003-3
- 39. Porcu, S., Secci, F., and Ricci, P.C. (2022). Advances in hybrid composites for photocatalytic applications: A review. Molecules. 27: 6828. https://doi.org/10.3390/molecules27206828
- 40. Sadiku, M., Selimi, T., Berisha, A., Maloku, A., Mehmeti, V., Thaci, V., and Hasani, N. (2022). Removal of methyl violet from aqueous solution by adsorption onto halloysite nanoclay: Experiment and theory. Toxics. 10: 445. 1–19. https://doi.org/10.3390/toxics10080445
- 41. Saeed, K., Khan, I., Gull, T., and M. Sadiq. (2017). Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. Appl. Water Sci. 7 3841–3848. https://doi.org/10.1007/s13201-017-0535-3
- 42. Saule, M., Zhanibek, A., Milana, B., John, V., Dionissios, M., Timur, S.A., and Stavros, G.P. (2024). TiO2/Zeolite Composites for SMX Degradation under UV Irradiation. Catalysts. 14: 147. 1–16. https://doi.org/10.3390/catal14020147
- 43. Selim, A.Q., Mohamed, E.A., Seliem, M.K., Zayed, A.M. (2018). Synthesis of sole cancrinite phase from raw muscovite: Characterization and optimization. Journal of Alloys and Compounds, 762: 653–667. https://doi.org/10.1016/j.jallcom.2018.05.195
- 44. Sherly, R.A., Padma, C.M., D.H. Raja, S. Sindhusha, A.I. Almansour, S.S.J. Dhas. (2024). H2O2-assisted photo-electrocatalytic and photocatalytic degradation of methyl violet by CuO-modified TiO2 nanotube arrays. Opt. Mater. (Amst) 155: 115870.
- 45. Shokry, F., El-Gedawy, M., Nosier, S. A., Aziz, M. A. H. (2025). Optimizing photocatalytic degradation of methyl violet dye in a recirculating slurry-type reactor. Results in Chemistry 13: 101980. https://doi.org/10.1016/j.rechem.2024.101980
- 46. Side, S., Putro, S.E., Pratiwi, D.E., Rahma, A., and Rahman, A. 2023. The effect of acid treatment on the characteristics of modernite zeolite. Jurnal Sainsmat, 12(2): 114-123.
- 47. Singh, A., Pal, D. B., M. Akbar., Alhazmi, A., Haque, S., Yoon, T., Srivastava, N., and Gepta, V. K. (2022). Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresource Technology. 343: 126154. https://doi.org/10.1016/j.biortech.2021.126154
- 48. Velarde, L., Akhtar, F., & Inglezakis, V.J. (2023). Adsorption of heavy metals on natural zeolites: A review. Chemosphere, 328, 138508. https://doi.org/10.1016/j.chemosphere.2023.138508
- 49. Wang, Y., Lin, M., and Tuel, A. (2007). Hollow TS-1 crystals formed via a dissolution–recrystallization process. Microporous and Mesoporous Materials. 102: 80–85. https://doi.org/10.1016/j.micromeso.2006.12.019
- 50. Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., Tsang, D.C., Ok, Y.S., Hou, D. A green biochar/iron oxide composite for methylene blue removal. (2020). J. Hazard. Mater. 384: 121286. https://doi.org/10.1016/j.jhazmat.2019.121286
- 51. Zhang, S., Zhang, J., Sun, J., and Tang, Z. (2020). Capillary microphotoreactor packed with TiO2-coated glass beads: An efficient tool for photocatalytic reaction. Chemical Engineering and Processing – Process Intensification. 147: 107746. https://doi.org/10.1016./j.cep.2019.107746
- 52. Zhou, H., Wang, H., Yue, C., He, L., Li, H., Zhang, H., Yang, S. and Ma, T. (2024). Photocatalytic degradation by TiO2-conjugated/coordination polymer heterojunction: Preparation, mechanisms, and prospects. Review. Applied Catalysis B: Environment and Energy. 344: 123605. https://doi.org/10.1016/j.apcatb.2023.123605
- 53. Zhuang, Q. Zhu, G. Li, Z. Wang, P. Zhan, C. Ren, Z. Si, S. Li, D. Cai dan P. Qin. (2022). Photocatalytic degradation of organic dyes using covalent triazine based framework. Mater. Res. Bull. 146: 111619. https://doi.org/10.1016/j.materresbull.2021.111619
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a51e4b47-39d7-4bd3-9f4b-5e165b4fcf1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.