
Scientific Issues
Jan Długosz University
in Częstochowa
Mathematics XXII (2017)
161–175
DOI http://dx.doi.org/10.16926/m.2017.22.12

COMPARING SAT- AND SMT- BASED BOUNDED
MODEL CHECKING FOR Ectl PROPERTIES

AGNIESZKA M. ZBRZEZNY

Abstract

We compare two bounded model checking methods for properties expressed in the
existential fragment of Computation Tree Logic (Ectl). To this end we use the generic
pipeline paradigm (GPP) and the train controller system (TC), the classic concurrency
problems, which we formalise by means of a finite transition system. We consider several
properties of the problems that can be expressed in Ectl logic, and we present the
performance evaluation of the mentioned bounded model checking methods by means of
the running time and the memory used.

1. Introduction

Bounded model checking [2, 3, 9] (BMC) is one of the symbolic model
checking techniques designed for finding witnesses for existential properties
or counterexamples for universal properties. Its main idea is to consider
a model reduced to a specific depth. The method works by mapping a
bounded model checking problem to the satisfiability problem (SAT) or to
satisfiability modulo theories problem (SMT). For the existential part of
Computation Tree Logic (Ectl) [6] and a network of automata the BMC
method can by described as follows: given a model M for a network of
automata, an Ectl formula ϕ, and a bound k, a model checker creates a
propositional formula or a quantifier-free first-order formula [M, ϕ]k that is
satisfiable if and only if the formula ϕ is true in the modelM.

In this paper, we make the following contributions. Firstly, we define
and implement an SMT-based BMC method for Ectl and for a network
of automata modelled using transition systems. Next, we report on the

• Agnieszka M. Zbrzezny — e-mail: agnieszka.zbrzezny@ajd.czest.pl
Jan Długosz University in Częstochowa.
Partly supported by National Science Centre under the grant

No. 2014/15/N/ST6/05079.

162 A. M. ZBRZEZNY

initial experimental evaluation of our SMT-based BMC method. To this
aim, we use two scalable benchmarks: the generic pipeline paradigm [8] and
the train controller system [7].

The structure of the paper is as follows. In Section 2 we shortly recall
definition of transition systems. Then, we present syntax and semantics of
Ectl. In Section 3 we shortly present BMC technique for Ectl. and we
define a new SMT-based BMC method for Ectl. In Section 4 we present
experimental evaluation of the SAT-based BMC [12] and SMT-based BMC
for Ectl and for a train controller system (TC) and generic pipeline para-
digm (GPP). In Section 5 we conclude the paper.

2. Preliminaries

In this section we introduce the basic definitions used in the paper. In
particular, we define the semantics of a transition system (TS) and syntax
and semantics of Ectl.

2.1. Transition System. The transition system [1] (also called a model)
is a tuple

M = (S,Act,−→, s0,AP, L) where:
S is a set of states, Act is a set of actions, −→ ⊆ S×Act×S is a transition
relation, s0 ∈ S is the initial state, AP is a set of atomic propositions, and
L : S → 2AP is a labelling function assigning to each state a set of atomic
propositions that are assumed to be true at that state. The transition
system is called finite if S, Act, and AP are finite. We write s a−→ s′

instead of (s, a, s) ∈ −→. Moreover, we write s −→ s′ if s a−→ s′, for some
a ∈ Act.

We assume that a considered model has no terminal states, i.e. for every
s ∈ S there exist s′ ∈ S such that s −→ s′. The set of all natural numbers
is denoted by N. A path in M is an infinite sequence π = (s0, s1, . . .) of
states such that si−→si+1 for each i ∈ N. For a path π = (s0, s1, . . .) and
i ∈ N, the i-th state of π is defined as π(i) = si. By Π(s) we denote the set
of all the paths starting at s ∈ S.

2.2. ECTL. The Existential Computation Tree Logic is a restriction of
a propositional branching-time temporal logic CTL that was introduced
by Emerson and Clarke in [6]. The syntax of Ectl formulae over the
set AP of atomic propositions is defined by the following grammar: ϕ:=
true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | EGϕ, where
p ∈ AP and ϕ is a formula. The symbols X, U and G are the modal
operators for “neXt time”, “Until” and “Globally”, respectively. The symbol
E is the existential path quantifier. The derived basic modalities are defined
as follows:

163

EFα
df
= E(trueUα), E(αRβ)

df
= E(βU (α ∧ β)) ∨ EGβ.

LetM be a model, and ϕ an Ectl formula. An Ectl formula ϕ is true
in the model M (in symbols M |= ϕ) iff M, s0 |= ϕ (i.e., ϕ is true at the
initial state of the modelM), where

M, s |= true,

M, s 6|= false,

M, s |= p iff p ∈ L(s),

M, s |= ¬p iff p 6∈ L(s),

M, s |= α ∧ β iffM, s |= α andM, s |= β,

M, s |= α ∨ β iffM, s |= α orM, s |= β,

M, s |= EXα iff (∃π ∈ Π(s))(M, π(1) |= α),

M, s |= E(αUβ) iff (∃π ∈ Π(s))(∃m ≥ 0)(M, π(m) |= β and
(∀j < m)M, π(j) |= α),

M, s |= EGα iff (∃π ∈ Π(s))(∀m ≥ 0)(M, π(m) |= α).

3. Bounded Model Checking

The satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background theories ex-
pressed in classical first-order logic with equality. The SMT-based Bounded
Model Checking (BMC) is a popular model checking technique for the ver-
ification of concurrent systems. We have given a model M, an existen-
tial modal formula ϕ, and a non-negative bound k, the SMT-based BMC
consists in searching for a non-empty set of paths of length k that consti-
tute a witness for the checked property ϕ. In particular, the SMT-based
bounded model checking algorithms generate a quantifier-free first-order
formula which is satisfiable if and only if the mentioned set of paths exist.
The quantifier-free first-order formula is usually obtained as a combination
of an SMT encoding of the unfolding of the transition relation of the given
model, and an SMT encoding of the property in question. If the generated
quantifier-free first-order formula is not satisfiable, then k is incremented
until either the problem becomes intractable due to the complexity of solv-
ing the corresponding SAT instance, or k reaches the upper bound of the
bounded model checking problem for the language under consideration.

We have implemented a translation to SMT strictly following the trans-
lation to SAT given in [12].

SinceM is a parallel composition of a finite number n of finite transition
systems, every state of M can be encoded as a natural number vector of
the length n. Thus, each state of M can be represented by a valuation

164 A. M. ZBRZEZNY

of a vector (called a symbolic state) of different individual variables called
individual state variables. Moreover, every action ofM can be represented
by a valuation of an individual variable, and the designated positions l of
the k-paths used in the translation can be also be represented by valuations
of individual variables. Furthermore, k-paths can be represented as vectors
of symbolic states.

The SAT-based BMC method for Ectl was introduced in [9], and then
it was improved in [12]. Unfortunately the encoding presented in [12] does
not encode actions In our new SMT-based approach we encode actions as
well.

3.1. SMT-based bounded model checking. LetM be a model, k ≥ 0
a bound, ϕ an Ectl formula, and letM, s |=k ϕ denotes that ϕ is k-true
at the state s ofM. The formula ϕ is k-true inM (in symbolsM |=k ϕ)
iffM, s0 |=k ϕ (i.e., ϕ is k-true at the initial state of the modelM).

The bounded model checking problem asks whether there exists k ∈ N
such that M |=k ϕ. The following theorem states that for a given model
and an Ectl formula there exists a bound k such that the model checking
problem (M |= ϕ) can be reduced to the BMC problem (M |=k ϕ). The
theorem can be proven by induction on the length of the formula ϕ.

Theorem 1 ([12]). Let M be a model and ϕ an Ectl formula. Then,
the following equivalence holds: M |= ϕ iff there exists k ≥ 0 such that
M |=k ϕ.

Translation to SMT. The translation to SMT is based on the bounded
semantics. LetM be a model, ϕ an Ectl formula, and k ≥ 0 a bound. The
presented SMT encoding of the BMC problem for Ectl is based on the SAT
encoding of the same problem [12], and it relies on defining the quantifier-
free first-order formula [M, ϕ]k := [Mϕ,s0]k ∧ [ϕ]M,k that is satisfiable if
and only ifM |=k ϕ holds.

The definition of the formula [Mϕ,s0]k assumes that states of the model
M are encoded in a symbolic way. Such a symbolic encoding is possible,
since the set of states of M is finite. In particular, each state s can be
represented by a vector w (called a symbolic state) of different individual
variables ranging over the natural numbers (called individual state variables)
and each action can be represented by a valuation of a symbolic action a
that is a vector of the individual variables ranging over the natural numbers.
The formula [Mϕ,s0]k encodes a rooted tree of k−paths of the model M.
The number of branches of the tree depends on the value of the auxiliary
function fk : Ectl→ N defined in [10].

165

Given the above, the j-th symbolic k-path πj is defined as the following
sequence (w0,j , . . . ,wk,j), where wi,j are symbolic states for 0 ≤ i ≤ k and
0 ≤ j < fk(ϕ).

Let w and w′ be two different symbolic states. We assume definitions of
the following auxiliary quantifier-free first-order formulae: Is0(w) - encodes
the initial state of the model M, T (w,a,w′) - encodes the transition re-
lation of M, and p(w) - encodes the set of states of M in which p ∈ AP
holds.

The formula [Mϕ,s0]k encoding the unfolding of the transition relation of
the modelM fk(ϕ)-times to the depth k is defined as follows:

[Mϕ,s0]k := Is0(w0,0) ∧
fk(ϕ)−1∧

j=0

k−1∧
i=0

T (wi,j ,ai,jwi+1,j)(1)

For every Ectl formula ϕ the function fk determines how many symbolic
k-paths are needed for translating the formula ϕ. Given a formula ϕ and
a set A of k-paths such that |A| = fk(ϕ), we divide the set A into subsets
needed for translating the subformulae of ϕ. To accomplish this goal we
need the auxiliary functions hUn (A, e) and hRn (A, e) that were defined in
[12].

Below we show the translation for the temporal operators EX, EU and
EG only.

Let ϕ be an Ectl formula, M a model, and k ∈ N a bound. The
quantifier-free first-order formula [ϕ]M,k := [ϕ]

[0,0,Fk(ϕ)]
k , where Fk(ϕ) =

{j ∈ N | 0 6 j < fk(ϕ)}, encodes the bounded semantics for Ectl, and it
is defined inductively as shown below. Namely, let 0 6 n < fk(ϕ), m 6 k,
n′ = min(A), hX = hX(A), hUk = hUk (A, fk(β)), and hGk = hGk (A, fk(α)),
then:

[EXα]
[m,n,A]
k := wm,n = w0,n′ ∧ [α]

[1,n′,hX]
k ,

[EGα]
[m,n,A]
k := wm,n = w0, n′ ∧ Lk(n′) ∧

k∧
j=0

[α]
[j, n′, hG(j)]
k ,

[E(αUβ)]
[m,n,A]
k := wm,n = w0, n′ ∧

k∨
i=0

(
[β]

[i, n′, hU(k)]
k ∧

i−1∧
j=0

[α]
[j, n′, hU(j)]
k

)
.

Theorem 2. LetM be a model, and ϕ an Ectl formula. Then for every
k ∈ N, M |=k ϕ if, and only if, the formula [M, ϕ]k is satisfiable.

166 A. M. ZBRZEZNY

3.2. Example. Now we show how to apply our SMT-based BMC method
to verify the generic pipeline paradigm (GPP) TS model. The model of
GPP involves n+ 2 automata: Producer producing data or being inactive,
Consumer receiving data or being inactive, and a chain of n intermediate
Nodes which can be ready for receiving data, processing data or sending
data.

ProdReady

ProdSend

Producer Consumer

ConsReady

Node1Ready

Processing Processing

data data

Node1Send NodenSend
Received

producing

processing1 processingn

send1

send1

send2

sendn

sendn+1

sendn+1consuming

Node1 Noden

NodenReady

by node 1 by node n

Figure 1. The GPP system [11]

As an example we consider the system with one node. We will show the
important parts of the unfolding (to the depth 2) of the transition relation
and also the translation of the temporal formula ϕ5 = EF(ProdSend ∧
Received) on the k-path of the length 2. To this aim we need some auxiliary
notations.

Let w denotes the symbolic global state and a denotes the symbolic ac-
tion. We encode the location ProdReady by 0 and the location ProdSend
by 1; the locations Node1Ready is encoded by 0, the location Node1Proc
by 1, and the location Node1Send by 2; eventually the location ConsReady
is encoded by 0, and the location ConsReceived by 1.

Moreover, we encode the action Produce by 1, the action Send1 by 2,
the action Proc1 by 4, the action Send2 by 3, and the action Consume by
5.

Now we are ready to present some of the formulae involved in the un-
folding of the transition relation and in the translation of the formula ϕ.

The only initial state is represented by the following formula: a0 = 0 ∧
w0 = 0 ∧ w1 = 0 ∧ w2 = 0.

The SMT file for the GPP system and the formula ϕ5 generated by our
implementation is following:
(set-logic QF_LIA)

167

(declare-fun w0 () Int)
(declare-fun w1 () Int)
(declare-fun w2 () Int)
(declare-fun a0 () Int)
(declare-fun w3 () Int)
(declare-fun w4 () Int)
(declare-fun w5 () Int)
(declare-fun a3 () Int)
(declare-fun w6 () Int)
(declare-fun w7 () Int)
(declare-fun w8 () Int)
(declare-fun a6 () Int)

; Path nr 0: first state
(assert true)

(assert (and (or (and (= w0 0) (= w3 1) (= a3 1)) (and (= w0 1)
(= w3 0) (= a3 2)) (and (not (= a3 1)) (not (= a3 2))
(= w0 w3))) (or (and (= w1 0) (= w4 1) (= a3 2)) (and (= w1 2)
(= w4 0) (= a3 3)) (and (= w1 1) (= w4 2) (= a3 4))
(and (not (= a3 2)) (not (= a3 3)) (not (= a3 4)) (= w1 w4)))
(or (and (= w2 0) (= w5 1) (= a3 3)) (and (= w2 1) (= w5 0)
(= a3 5)) (and (not (= a3 3)) (not (= a3 5)) (= w2 w5)))
(or (= a3 1) (= a3 2) (= a3 3) (= a3 4) (= a3 5))))

(assert (and (or (and (= w3 0) (= w6 1) (= a6 1)) (and (= w3 1)
(= w6 0) (= a6 2)) (and (not (= a6 1)) (not (= a6 2)) (= w3 w6)))
(or (and (= w4 0) (= w7 1) (= a6 2)) (and (= w4 2) (= w7 0)
(= a6 3)) (and (= w4 1) (= w7 2) (= a6 4)) (and (not (= a6 2))
(not (= a6 3)) (not (= a6 4)) (= w4 w7))) (or (and (= w5 0)
(= w8 1) (= a6 3)) (and (= w5 1) (= w8 0) (= a6 5))
(and (not (= a6 3)) (not (= a6 5)) (= w5 w8)))
(or (= a6 1) (= a6 2) (= a6 3) (= a6 4) (= a6 5))))

; Translated formula
(assert (and (or (and (= w0 1) (= w2 1)) (and (= w3 1) (= w5 1))
(and (= w6 1)(= w8 1))) (and (= w0 w0) (= w1 w1) (= w2 w2))))

; Initial path: 0
(assert (and (= a0 0) (= w0 0) (= w1 0) (= w2 0)))

(check-sat)
(get-model)

The corresponding DIMACS file is following:

168 A. M. ZBRZEZNY

p cnf 83 222
-80 81 82 0
-77 82 83 0
-74 -76 77 0
-70 -71 72 0
-69 72 73 0
-66 -67 68 0
-64 68 69 0
-61 -62 63 0
-59 -60 61 0
-57 63 64 0
-52 -54 55 0
-49 -62 67 0
-49 -55 56 0
-48 -62 71 0
-48 -49 50 0
-46 -47 48 0
-45 -50 51 0
-41 -42 43 0
-40 43 44 0
-37 -38 39 0
-35 -58 59 0
-35 -36 37 0
-34 39 40 0
-31 -32 33 0
-29 -30 31 0
-27 -53 54 0
-27 -28 29 0
-26 33 34 0
...

4. Experimental Results

In this section we experimentally evaluate the performance of our SMT-
based BMC encoding for Ectl over the TS semantics. We compare our
experimental results with the experimental results generated using SAT-
based [12] We have conducted the experiments using two benchmarks: the
generic pipeline paradigm (GPP) TS model [8] and the train controller sys-
tem (TCS) TS model [7]. We would like to point out that both benchmarks
are very useful and scalable examples.

An evaluation of both BMC algorithms, which have been implemented
in C++ is given by means of the running time, the memory used, and the
number of generated variables and clauses.

169

We would like to point out that both benchmarks are very useful and
scalable examples.

4.1. A Train Controller System. To evaluate the BMC techniques for
Ectl, we analyse a scalable concurrent system, which is a train controller
system (TCS). The system consists of a controller, and n trains (for n ≥ 2),
and it is assumed that each train uses its own circular track for travelling in
one direction. All trains have to pass through a tunnel, but because there
is only one track in the tunnel, arriving trains cannot use it simultaneously.
There are signal lights on both sides of the tunnel, which can be either red
or green. All trains notify the controller when they request entry to the
tunnel or when they leave the tunnel. The controller controls the colour of
the signal lights

An automata model of the TCS system is shown on Figure 2.

Controller

Green

Away 1

Red

Wait 1

Train1

Tunnel 1

approach1

in1

out1

in1

inn

out1

outn

Away n

Wait n

Trainn

Tunnel n

approachn

inn

outn

Figure 2. A network of automata for a train controller sys-
tem ([11])

The specifications for it are given in the existential form, i.e., they are
expressed in the Ectl language.

Formula ϕ0 states that there exists the case that all trains are outside
the tunnel and Train n is in the tunnel, where n is the number of trains.

ϕ0 = EF
(
(
n−1∧
i=1

¬InTunneli) ∧ InTunneln
)
.

In Figures 3(a) and 3(b) we present a comparison of total time usage
and total memory usage for the formulae ϕ0. As we can see, in this case
SMT-BMC is much better than SAT approach. The reason is that we need
only one symbolic to verify the formula.

170 A. M. ZBRZEZNY

 0

 100

 200

 300

 400

 500

 600

2 1000 3000 5000 7000 9000 11000

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time usage for TCS, ϕ0

ECTL−SAT
ECTL−SMT

(a)

 1

 10

 100

 1000

 10000

2 1000 3000 5000 7000 900011000

M
e

m
o

ry
 i
n

 M
B

Number of trains

Total memory usage for TCS, ϕ0

ECTL−SAT
ECTL−SMT

(b)

Figure 3. A comparison of total time usage and total mem-
ory usage for the formulae ϕ0

Formula ϕ1 states that there exists the case that Train 1 is in the tunnel
and either it and other train will not be in the tunnel during the next n+ 1
steps, where n is the number of trains.

ϕ1 = EF(InTunnel1 ∧EX(
n∧

i=1

¬InTunneli ∧

EX(

n∧
i=1

¬InTunneli ∧EX(

n∧
i=1

¬InTunneli . . .))︸ ︷︷ ︸
n

).

In Figures 4(a) and 4(b) we present a comparison of total time usage and
total memory usage for the formulae ϕ1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 10 50 150 200 250

T
im

e
 i
n

 s
e
c
.

Number of trains

Total time usage for TCS, ϕ1

ECTL−SAT
ECTL−SMT

(a)

 1

 10

 100

 1000

 10000

2 10 50 150 200 250

M
e
m

o
ry

 i
n
 M

B

Number of trains

Total memory usage for TCS, ϕ1

ECTL−SAT
ECTL−SMT

(b)

Figure 4. A comparison of total time usage and total mem-
ory usage for the formulae ϕ1

171

An analysis of experimental results for formula ϕ1 leads to the conclusion
that SAT-based BMC for Ectl uses less time and memory comparing to
SMT-based BMC for Ectl. The reason is that although BMC needs a lot of
paths for verification, but these paths are short. The SAT-based algorithm
was not able to verify the system with 300 on lack of memory. In the case of
SAT-based BMC, generation of DIMACS file consume most of the memory
and time.

Formula ϕ2 expresses that there exists the case that Train 1 is in the
tunnel or either it or other train will not be in the tunnel during the next
n+ 1 steps, where n is the number of trains.

ϕ2 = EF(InTunnel1 ∨EX(
n∧

i=1

¬InTunneli ∨

EX(

n∧
i=1

¬InTunneli ∨EX(

n∧
i=1

¬InTunneli . . .))︸ ︷︷ ︸
n

).

In Figures 5(a) and 5(b) we present a comparison of total time usage and
total memory usage for the formulae ϕ2.

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 10 50 100 200 300

T
im

e
 i
n
 s

e
c
.

Number of trains

Total time usage for TCS, ϕ2

ECTL−SAT
ECTL−SMT

(a)

 1

 10

 100

 1000

 10000

2 10 50 100 200 300

M
e

m
o

ry
 i
n

 M
B

Number of trains

Total memory usage for TCS, ϕ2

ECTL−SAT
ECTL−SMT

(b)

Figure 5. A comparison of total time usage and total mem-
ory usage for the formulae ϕ2.

An observation of experimental results for formula ϕ2 leads to the con-
clusion that SAT-BMC for Ectl uses less time and memory comparing to
SMT-based BMC for Ectland SAT-based BMC is significantly faster than
SMT-based approach. In this case almost all memory was used by SMT-
and SAT-solvers. The reason is that BMC needs a lot of short paths for
verification. In this case SAT-based BMC is usually better than SMT-based
BMC.

172 A. M. ZBRZEZNY

4.2. Generic Pipeline Paradigm. The benchmark we consider is the
generic pipeline paradigm (GPP) [8], which consists of three parts: Pro-
ducer producing data, Consumer receiving data, and a chain of n interme-
diate Nodes that transmit data produced by Producer to Consumer. The
local states for each component (Producer, Consumer, and intermediate
Nodes), and their protocols are shown on Fig. 1.

Formula ϕ3 states that there exists a path that always Producer is ready
to produce data or either Consumer will receive data in maximum 2n + 1
steps.

ϕ3 = EG(¬ProdSend ∨EX(︸︷︷︸
2n+1

Received))

Formula ϕ4 states that there exists a path that always in maximum n2 +
2n steps Consumer will receive the data.

ϕ4 = EX(Received ∧EX(Received . . .))︸ ︷︷ ︸
n2+2n

)

Formula ϕ5 states that there exists a path that Producer will produce
data and Consumer will receive the data.

ϕ5 = EF(ProdSend ∧Received)

In Figures 6(a) and 6(b) we present a comparison of total time usage and
total memory usage for the formulae ϕ3.

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 6 7 8 8 9 10 11

T
im

e
 i
n

 s
e
c
.

Number of nodes

Total time usage for GPP, ϕ3

ECTL−SAT
ECTL−SMT

(a)

 1

 10

 100

 1000

 10000

1 2 3 4 6 7 8 8 9 10 11

Number of trains

Total memory usage for GPP, ϕ3

ECTL−SAT
ECTL−SMT

(b)

Figure 6. A comparison of total time usage and total mem-
ory usage for the formulae ϕ3.

An observation of experimental results for formula ϕ3 leads to the conclu-
sion that SAT-BMC uses less time and memory comparing to SMT-BMC
for Ectl.

173

In Figures 7(a) and 7(b) we present a comparison of total time usage and
total memory usage for the formulae ϕ4.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 5 9 10

T
im

e
 i
n

 s
e
c
.

Number of nodes

Total time usage for GPP, ϕ4

ECTL−SAT
ECTL−SMT

(a)

 1

 10

 100

 1000

 10000

1 5 9 10

Number of trains

Total memory usage for GPP, ϕ4

ECTL−SAT
ECTL−SMT

(b)

Figure 7. A comparison of total time usage and total mem-
ory usage for the formulae ϕ4.

An analysis of experimental results for formula ϕ4 leads to the conclu-
sion that also in this case SAT-BMC for Ectl uses less time and memory
comparing to SMT-BMC. SMT-BMC is worse in this case because we need
many short paths to verify the formula.

In Figures 8(a) and 8(b) we present a comparison of total time usage and
total memory usage for the formulae ϕ5.

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 5 10 15 20 30 40 50 60 70

T
im

e
 i
n

 s
e
c
.

Number of nodes

Total time usage for GPP, ϕ5

ECTL−SAT
ECTL−SMT

(a)

 1

 10

 100

 1000

1 5 10 15 20 30 40 50 60 70

Number of trains

Total memory usage for GPP, ϕ5

ECTL−SAT
ECTL−SMT

(b)

Figure 8. A comparison of total time usage and total mem-
ory usage for the formulae ϕ5.

174 A. M. ZBRZEZNY

The SAT-BMC is able to verify the formula ϕ5 for GPP with 40 nodes
and the SMT-BMC is able to verify the formula for GPP with 70 nodes
memory usage for the SAT-BMC is lower than for SMT-BMC.

For the tests we have used a computer equipped with Intel Core i7-5500U
2.4 GHz x 4 processor and 12 GB of RAM, running Ubuntu Linux. We have
used the state of the art SAT-solver MiniSat5 [4] and Z3 SMT-solver [5].

5. Conclusions

In this paper we presented an SMT encoding for Ectl. We implemented
the new method and we showed a comparison between the SAT- and SMT-
based BMC methods for Ectl. The experimental results showed that, in
general, SAT-based approach is better for tested systems and properties
than SMT-based approach. In general, results show that the approaches
are complementary, and that the SMT-based BMC approach appears to be
superior for the short paths. This is a novel and interesting result, which
shows that the choice of the BMC method should depend on the considered
system and formula.

References

[1] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proceedings of the 5th Int. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’99), volume 1579 of LNCS, pages 193–207.
Springer-Verlag, 1999.

[3] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. Bounded model checking. Advances in Computers, 58:117–148, 2003.

[4] N. Eén and N. Sörensson. MiniSat. http://minisat.se/MiniSat.html.
[5] N. Eén and N. Sörensson. MiniSat - A SAT Solver with Conflict-Clause Minimiza-

tion. In Proceedings of 8th International Conference on Theory and Applications of
Satisfiability Testing(SAT’05), LNCS. Springer-Verlag, 2005.

[6] E. A. Emerson and E. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

[7] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In Pro-
ceedings of the 9th Int. SPIN Workshop (SPIN’02), volume 2318 of LNCS, pages
95–111. Springer-Verlag, 2002.

[8] D. Peled. All from one, one for all: On model checking using representatives. In
Proceedings of the 5th Int. Conf. on Computer Aided Verification (CAV’93), volume
697 of LNCS, pages 409–423. Springer-Verlag, 1993.

[9] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

[10] B. Woźna. ACTL∗ properties and bounded model checking. Fundamenta Informat-
icae, 63(1):65–87, 2004.

[11] B. Woźna-Szcześniak, A. M. Zbrzezny, and A. Zbrzezny. The BMC method for the
existential part of RTCTLK and interleaved interpreted systems. In Proceedings of

175

the 15th Portuguese Conference on Artificial Intelligence (EPIA’2011), volume 7026
of LNAI, pages 551–565. Springer-Verlag, 2011.

[12] A. Zbrzezny. Improving the translation from ECTL to SAT. Fundamenta Informat-
icae, 85(1-4):513–531, 2008.

Received: June 2017

Agnieszka M. Zbrzezny
Jan Długosz University in Częstochowa
Institute of Mathematics and Computer Science
al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
E-mail address: agnieszka.zbrzezny@ajd.czest.pl

