PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational challenges in the measurement of heavy-ion collision event characteristics with the atlas experiment at the LHC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy-ion collisions at extreme energies are expected to recreate conditions present in the early universe, producing a state of matter called the Quark Gluon Plasma (QGP). This state is characterized by very low viscosity resembling the properties of a perfect fluid. In such a medium, density fluctuations can easily propagate. In experimental practice, the size of these fluctuations is estimated by measuring the angular correlation of the particles produced. The aim of this paper is to present results of the measurements of the azimuthal anisotropy of charged particles produced in heavy-ion collisions with the ATLAS detector using the LHC Grid infrastructure for bulk processing of the data and resources available at the Tier-2 computing center for the final analysis stage.
Wydawca
Czasopismo
Rocznik
Strony
39--54
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Krakow, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
  • AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • [1] ACK Cyfronet AGH. http://www.cyfronet.krakow.pl/.
  • [2] ATLAS Collaboration: The ATLAS Experiment at the CERN Large Hadron Collider. JINST , vol. 3, p. S08003, 2008. http://dx.doi.org/10.1088/1748-0221/3/08/S08003.
  • [3] ATLAS Collaboration: Performance of the ATLAS Trigger System in 2010. Eur. Phys. J. , vol. C72, p. 1849, 2012. http://dx.doi.org/10.1140/epjc/s10052-011-1849-1.
  • [4] ATLAS Collaboration: Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at √ s NN= 2. TeV with the ATLAS detector. Eur. Phys. J. , vol. C74(8), p. 2982, 2014. http://dx.doi.org/10.1140/epjc/s10052-014-2982-4 .
  • [5] Brun R., Rademakers F.: ROOT an object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 389(12), pp. 81–86, 1997. ISSN 0168-9002. New Computing Techniques in Physics Research V. http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(97)00048-X.
  • [6] Br ̈uning O. S., Collier P., Lebrun P., Meyers S., Ostojic R., Poole J., Proudlock P.: LHC Design Report. CERN, Geneva, 2004.
  • [7] Chaudhuri A. K.: Dissipative hydrodynamics and heavy-ion collisions. Journal of Physics G: Nuclear and Particle Physics, vol. 35(10), p. 104015, 2008. http://stacks.iop.org/0954-3899/35/i=10/a=104015.
  • [8] ALICE Collaboration: Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV. Phys. Rev. Lett., vol. 105, p. 252302, 2010. http://dx.doi.org/10.1103/PhysRevLett.105.252302.
  • [9] ATLAS Collaboration: Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at √s NN = 2. 76 TeV with the ATLAS detector. Phys. Lett., vol. B707, pp. 330–348, 2012. http://dx.doi.org/10.1016/j.physletb.2011.12.056.
  • [10] ATLAS Collaboration: Observation of a new particle in the search for the Standard Model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett., vol. B716, pp. 1–29, 2012. ISSN 0370-2693. http://dx.doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.020.
  • [11] CMS Collaboration: Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV. Phys. Rev. , vol. C87, p. 014902, 2013. http://dx.doi.org/10.1103/PhysRevC.87.014902.
  • [12] Evans L., Bryant P.: LHC Machine. Journal of Instrumentation, vol. 3(08), p. S08001, 2008. http://stacks.iop.org/1748-0221/3/i=08/a=S08001.
  • [13] Huovinen P., Kolb P., Heinz U. W., Ruuskanen P., Voloshin S.: Radial and elliptic flow at RHIC: Further predictions. Phys. Lett., vol. B503, pp. 58–64, 2001. http: //dx.doi.org/10.1016/S0370-2693(01)00219-2.
  • [14] Kovtun P. K., Son D. T., Starinets A. O.: Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics. Phys. Rev. Lett., vol. 94, p. 111601, 2005. http://dx.doi.org/10.1103/PhysRevLett.94.111601.
  • [15] Lunin O., Mathur S.D.: Statistical interpretation of Bekenstein entropy for systems with a stretched horizon. Phys. Rev. Lett., vol. 88, p. 211303, 2002. http://dx.doi.org/10.1103/PhysRevLett.88.211303.
  • [16] Luzum M.: Flow fluctuations and long-range correlations: elliptic flow and beyond. J. Phys., vol. G38, p. 124026, 2011. http://dx.doi.org/10.1088/0954-3899/38/12/124026.
  • [17] Luzum M., Ollitrault J.Y.: Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions. Phys. Rev., vol. C87, p. 044907, 2013. http://dx.doi.org/10.1103/PhysRevC.87.044907.
  • [18] Maeno T.: PanDA: distributed production and distributed analysis system for ATLAS. Journal of Physics: Conference Series, vol. 119(6), p. 062036, 2008. http://stacks.iop.org/1742-6596/119/i=6/a=062036.
  • [19] Mu ̃no P. C., the Atlas Collaboration: Overview of Recent ATLAS Physics Results. Journal of Physics: Conference Series, vol. 447(1), p. 012014, 2013. http://stacks.iop.org/1742-6596/447/i=1/a=012014.
  • [20] Poskanzer A. M., Voloshin S. A.: Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev., vol. C58, pp. 1671–1678, 1998. http://dx.doi.org/10.1103/PhysRevC.58.1671.
  • [21] Qin G. Y., Petersen H., Bass S. A., M ̈uller B.: Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. C , vol. 82, p. 064903, 2010. http://dx.doi.org/10.1103/PhysRevC.82.064903.
  • [22] Qiu Z., Heinz U. W.: Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev., vol. C84, p. 024911, 2011. http://dx.doi.org/10.1103/PhysRevC.84.024911.
  • [23] Romatschke P.: New Developments in Relativistic Viscous Hydrodynamics. Int. J. Mod. Phys., vol. E19, pp. 1–53, 2010. http://dx.doi.org/10.1142/S0218301310014613.
  • [24] Schenke B., Jeon S., Gale C.: Anisotropic flow in √ s = 2. 76 TeV Pb+Pb collisions at the LHC. Phys. Lett., vol. B702, pp. 59–63, 2011. http://dx.doi.org/10.1016/j.physletb.2011.06.065.
  • [25] Snellings R.: Anisotropic flow from RHIC to the LHC. Eur. Phys. J., vol. C49, pp. 87–90, 2007. http://dx.doi.org/10.1140/epjc/s10052-006-0107-4.
  • [26] Song H.: Hydrodynamic Modeling and the QGP Shear Viscosity. Eur. Phys. J., vol. A48, p. 163, 2012. http://dx.doi.org/10.1140/epja/i2012-12163-9.
  • [27] STAR Collaboration: Elliptic flow from two and four particle correlations in Au+Au collisions at √ s NN = 130 GeV. Phys. Rev., vol. C66, p. 034904, 2002. http://dx.doi.org/10.1103/PhysRevC.66.034904.
  • [28] Steinberg P.: What have we learned about the Quark-Gluon Plasma with the ATLAS detector at the LHC? Nucl. Phys., vol. A, 2014.
  • [29] Voloshin S., Zhang Y.: Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Zeitschrift f ̈ur Physik C Particles and Fields, vol. 70(4), pp. 665–671, 1996. ISSN 0170-9739. http://dx.doi.org/10.1007/s002880050141.
  • [30] Voloshin S. A., Poskanzer A. M., Snellings R.: Collective Phenomena in Non-Central Nuclear Collisions, Landolt-B ̈ornstein – Group I Elementary Particles, Nuclei and Atoms, vol. 23. Springer, Berlin Heidelberg, 2010. ISBN 978-3-642-01538-0. http://dx.doi.org/10.1007/978-3-642-01539-7_10
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a519679b-7ec9-4718-92e6-105d2959f63c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.