Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Boriding of 34CrNiMo6 steel was performed in a solid medium consisting of Ekabor-II powders at 1123, 1173 and 1223 K for 2, 4 and 6 h. Morphological and kinetic examinations of the boride layers were carried out by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The thicknesses of the boride layers ranged from 22±2.3 to 145±4.1 depending on boriding temperature and time. The hardness of boride layer was about 1857 HV0.1 after boriding for 6 h at 1223 K, while the hardness of the substrate was only around 238 HV0.1. Growth rate constants were found to be between 1.2×10-13 – 9.8×10-13 m2/s depending on temperature. The activation energy for boron diffusion was estimated as 239.4±8.6 kJ mol-1. This value was comparable to the activation energies reported for medium carbon steels in the literature.
Wydawca
Czasopismo
Rocznik
Strony
38--48
Opis fizyczny
Bibliogr. 45 poz., rys., wykr., tab.
Twórcy
autor
- Süleyman Demirel University, Faculty of Arts and Sciences, Department of Physics, Isparta, Turkey
autor
- Süleyman Demirel University, Graduate School of Natural and Applied Sciences, Isparta, Turkey
autor
- Isparta University of Applied Sciences, Faculty of Technology, Mechanical Engineering, Isparta, Turkey
Bibliografia
- 1. Gong, B., Duan, X.W., Liu, J.S., Liu.J.J., A physically based constitutive model of As-forged 34CrNiMo6 steel andprocessing maps for hot working. Vacuum, 155 (2018) 345–357.
- 2. Branco, R., Costa, J.D., Antunes. F.V., Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel. Theoretical and Applied Fracture Mechanics, 58 (2012) 28–34.
- 3. Wu, Z., Huang, C., Liu, F., Xia, C., Ke, L., Microstructure and Mechanical Properties of 34CrNiMo6 Steel Repaired by Friction Stir Processing Materials, 12 (2019) 1-11.
- 4. Litoria, A.K., Figueroa, C.A., Bim, L.T., Pruncu, C.I., Joshi, A.A., Hosmani. S.S., Packboriding of low alloy steel: microstructure evolution and migration behaviour of alloying elements. Philosophical Magazine, 100 (2020) 353–378.
- 5. Yorulmaz, M.A., An investigation of boriding of medium carbon steels, MSc, Marmara University, Istanbul, Turkey, 2007.
- 6. Bejar, M.A., Moreno, E., Abrasive wear resistance of boronized carbon and low-alloy steels. Journal of Materials Processing Technology, 173 (2006) 352-358.
- 7. Kayali, Y., Investigation of Diffusion Kinetics of Borided AISI P20 Steel in Micro-Wave Furnace. Vacuum, 121 (2015) 129-134.
- 8. Uslu, I., Comert, H., Ipek, M., Ozdemir, O., Bindal, C., Evaluation of borides formed on AISI P20 steel. Materials and Design, 28 (2007) 55-61.
- 9. Yusuf, K.M., Abdullah, B., Saad, N.H., Proceedings of Asia International Conference on Tribology, (2018) 424-426.
- 10. Rodríguez-Castro, R., Campos-Silva,I., Martínez-Trinidad, J., Figueroa-López, U., Arzate-Vázquez, I., Hernández-Sánchez, E., Hernández-Sánchez, J., Mechanical behavior of AISI 1045 steels subjected to powder-pack boriding, Kovove Mater, 50 (2012) 357–364.
- 11. Culha, O., Toparli, M., Sahin, S., Aksoy. T., Characterization and determination of FexB layers’ mechanical properties. Journal of Materials Processing Technology, 206 (2008) 231-240.
- 12. Ucisik, A.H., Zeytin, S., Bindal, C., Boride coating on iron based alloys. Journal of the Australian Ceramic Society, 37 (2001) 83–94.
- 13. Gunes, I., Keddam, M., Chegroune, E., Ozcatal. M., Growth kinetics of boride layers formed on 99.0% purity nickel. Bulletin of Materials Science, 38 (2015) 1113–1118.
- 14. Dybkov, V.I., Goncharuk, L.V., G. Khoruzha, V.G., Meleshevich, K.A., Samelyuk, A.V., Sidorko. V.R., Diffusional Growth Kinetics of Boride Layers on Iron-Chromium Alloys. Solid State Phenomena, 138 (2008) 181–188.
- 15. Kulka, M., Makuch, N., Pertek, A., Maldzinski, L., Simulation on growth kinetics of boride layers formed on Fe during gas boriding in H2– BCl3 atmosphere. Journal of Solid State Chemistry, 199 (2013) 196–203.
- 16. Ortiz-Domínguez, M.O., Gómez-Vargas, A., Ares de Parga, G., Torres-Santiago, G., Velázquez-Mancilla, R., Castellanos-Escamilla, V.A., Mendoza-Camargo, J., Trujillo-Sánchez, R., Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches. Advances in Materials Science and Engineering, 2019 (2019) 1-12.
- 17. Zuno-Silva, J., Ortiz-Domínguez, M., Keddam, M., Elias-Espinosa, M., Damián-Mejía, O., Cardoso-Legorreta, E., Abreu-Quijano, M., Boriding kinetics of Fe2B layers formed on AISI 1045 steel. Journal of Mining and Metallurgy, , Section B: Metallurgy, 50 (2014) 101–107.
- 18. Keddam, M., Kulka, M.,Simulation of the Growth Kinetics of FeB and Fe2B Layers on AISI D2 Steel by the Integral Method., Physics of Metals and Metallography, 119, (2018) 842–851.
- 19. Zuno-Silva, J., Keddam, M., Ortiz-Domínguez, M., Elias-Espinosac, M.C., Cervantes-Sodid, F., Oseguera-Peña, J., De-Diosf, L.D.F., Gomez-Vargasf, O.A., Materials Research, 21 (2018) 1-10.
- 20. Efe, G.C. Mediha, I., Ozbek, I., Bindal, C., Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels. Materials Characterization, 59 (2008) 23-31.
- 21. Topuz, P., Aydogmus, T., Aydin, O., Kinetic Investigation of Boronized 34CrAlNi7 Nitriding Steel. International Journal of Engineering and Natural Sciences, 2 (2019) 17-22.
- 22. Sahin, S., Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. Journal of Materials Processing Technology, 209 (2009) 1736-1741.
- 23. Joshi, A.A., Hosmani. S.S., Pack-Boronizing of AISI 4140 Steel: Boronizing Mechanism and the Role of Container Design. Journal of Materials and Manufacturing Processes, 29 (2014) 1062–1072.
- 24. Nora, R.T., Zine, T.M., Abdelkader, K., Youcef, K., Ali, O., Jiang, X., Revista Matéria, Vol. 24, 2019, pp. 1-11.
- 25. Yu, L.G., Chen, X.J., Khor, K.A., Sundararajan, G., FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 53 (2005) 2361-2368.
- 26. Sen, S., Sen, U., Bindal, C., An Approachto Kinetic Study of Borided Steels. Surface Coating Technology, 191(2005) 274-285.
- 27. Altinsoy, I., Efe, F.G. Celebi., Ipek, M., Ozbek, I., Zeytin, S., Bindal, C., An investigation on borided AISI 1020 steel. International Advanced in Applied Physics and Materials Sciences, 1569 (2013)43-48.
- 28. Yamazaki, Y., Sugihara, M., Takaki, S., Abiko, K., Iijima, Y., Volume and Grain-Boundary Self-Diffusion in a High-Purity Fe50 mass% Cr Alloy Physica Status Solidi (a), 189 (2002) 97–105.
- 29. Ohta, J., Kako, K., Mayuzumi, M., Kusanagi, H., Abiko. K., In situ Transmission Electron Microscopy of Carbide Precipitation in Fe-50%Cr Alloys at Elevated Temperatures. Materials Transactions, 41 (2000) 130-135.
- 30. Rao, D., Upadhyaya, G.S., Sintering of Mo2FeB2 layered cermet containing SiC fibers. Materials Chemistry and Physics, 70 (2001) 336-339.
- 31. Azakli, Y., Cengiz, S., Tarakci, M., Gencer, Y., Characterisation of boride layer formed on Fe–Mo binary alloys. Surface Engineering , 32 (2016) 589-595.
- 32. Kaouka, A., Allaoui, O., Keddam, M., Growth kinetics of the boride layers formed on SAE 1035 steel. Mat´eriaux and Techniques, 101 (2013)705-712.
- 33. Keddam, M., Chegroune, R., Kulka, M., Makuch, N., Panfil, D., Siwak, P., Taktak, S., Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel. Transactions of the Indian Institute of Metals, 71 (2018) 79–90.
- 34. Kunitskii, Y.A., Marek, E.V., Some physical properties of iron borides. Soviet Powder Metallurgy and Metal Ceramics, 10 (1971) 216–218.
- 35. Calik, A., Taylan, F., Sahin, O., Ucar, N., Comparison of mechanical properties of boronized and vanadium carbide coated AISI 1040 steels. Indian Journal of Engineering and Materials Sciences, 16 (2009) 326-330.
- 36. Karakas, M.S., Gunen, A., Kanca, E., Yilmaz, E., Boride Layer Growth Kinetics of AISI H13 Steel Borided with Nano-Sized Powders. Archives of Metallurgy and Materials, 63 (2018)159-165
- 37. Yoon, J.H., Jee, Y.K., Lee, S.Y., Plasma paste boronizing treatment of the stainless steel AISI 304, Surface and Coatings Technology 112 (1999 ) 71–75
- 38. Campos, I., Ramirez, G., Figueroa, U., Martinez, J., Morales, O., Evaluation of boron mobility on the phases FeB, Fe2B, and diffusion zone in AISI 1045 and M2 steels, Applied Surface Sciences, 253 (2007) 3469–3475.
- 39. Pertek, A., Kulka, M., Characterization of complex (BþC) diffusion layers formedon chromium and nickel-based low-carbon steel. Applied Surface Science, 202 (2002) 252–260.
- 40. Carbucicchio, M., Palombarini, G., Effects of alloying elements on the growth of iron boride coatings, Journal of Materials Science Letters, 6 (1987)1147-1149.
- 41. Gunes, I., Kinetics of borided gear steels. Sadhana, Vol. 38, No. 3, 2013, pp. 527–541.
- 42. Jain, V., Sundararajan, G., Influence of the Pack Thickness of the Boronizing Mixture on the Boriding of Steel. Surface Coating Technology, 149 (2002) 21-26.
- 43. Brakman, C.M., Gommers, A.W.J., Mittemeijer, E.J., Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics. Journal of Materials Research, 4 (1989) 1354-1370.
- 44. Mebarek, B., Benguelloula, A., Zanoun, A., Effect of Boride Incubation Time During the Formation of Fe2B Phase, Mat. Res. 21 (2017) 1-6
- 45. Gunes, I., Taktak, S., Bindal, C., Yalcin, Y., Ulker, S., Kayali, Y., Investigation of diffusion kinetics of plasma paste borided AISI 8620 steel using a mixture of B2O3 paste and B4C/SiC, Sadhana, 38 (2013) 513–526.
Uwagi
1. This study [publication] was supported by the Suleyman Demirel University Scientific Research Fund, project number FYL-2019-7320.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5113ffd-6f46-41a4-9c56-8d4429d1fc75