Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Developing a model of fractional differential systems and studying the existence and stability of a solution is considebly one of the most important topics in the field of analysis. Therefore, this manuscript was dedicated to deriving a new type of fractional system that arises from the combination of three sequential fractional derivatives with fractional pantograph equations. Also, the fixed-point technique was used to evaluate the existence and uniqueness of solutions to the supposed hybrid model. Furthermore, stability results for the intended system in the sense of the Mittag-Leffler-Ulam have been investigated. Ultimately, an illustrative example has been highlighted in order to reinforce the theoretical results and suggest applications for this article.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240035
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
- Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia
- Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
autor
- Department of Engineering Science, Faculty of Engineering and Natural Sciences, Bandırma Onyedi Eylül University, Bandírma 10200, Turkey
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
autor
- Institut Supérieur d’Informatique et des Techniques de Communication, Université de Sousse, Sousse 4000, Tunisia
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
autor
- Department of Electricity and Electronics, Faculty of Science and Technology, Institute of Research and Development of Processes, University of the Basque Country, 48940-Leioa (Bizkaia), Spain
Bibliografia
- [1] S. N. Rao, A. H. Msmali, M. Singh, and A. A. H. Ahmadini, Existence and uniqueness for a system of Caputo-Hadamard fractional differential equations with multipoint boundary conditions, J. Funct. Spaces 2020 (2020), no. 1, 8821471.
- [2] K. A. Lazopoulos, Non-local continuum mechanics and fractional calculus, Mech. Res. Commun. 33 (2006), no. 6, 753–757.
- [3] R. Zafar, M. U. Rehman, and M. Shams, On Caputo modification of Hadamard-type fractional derivative and fractional Taylor series, Adv. Differential Equations 2020 (2020), 219.
- [4] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands, 2007.
- [5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
- [6] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear. Anal. 69 (2008), 2677–2682.
- [7] G. Ali, K. Shah, and G. Rahman, Investigating a class of pantograph differential equations under multi-points boundary conditions with fractional order, Int. J. Appl. Comput. Math. 7 (2021), no. 1, 2.
- [8] Y. Gouari, Z. Dahmani, and I. Jebri, Application of fractional calculus on a new differential problem of Duffing type, Adv. Math. Sci. J. 9, (2020), no. 12, 10989–11002.
- [9] M. Houas and M. Bezziou, Existence of solutions for neutral Caputo-type fractional integro-differential equations with nonlocal boundary conditions, Commun. Optim. Theory 2021 (2021), no. 9.
- [10] Humaira, H. A. Hammad, M. Sarwar, and M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differential Equations 2021 (2021), 242.
- [11] H. A. Hammad and M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl. 2022 (2022), 101.
- [12] E. T. Karimov, B. Lopez, and K. Sadarangani, About the existence of solutions for a hybrid nonlinear generalized fractional pantograph equation, Fractional Diff. Cal. 6 (2016), no. 1, 95–110.
- [13] S. K. Ntouyas and D. Vivek, Existence and uniqueness results for sequential Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comenianae. 90 (2021), no. 2, 171–185.
- [14] F. Mainradi and P. Pironi, The fractional Langevin equation: Brownian motion revisited, Extracta Math. 10 (1996), 140–154.
- [15] N. M. Dien, Existence and continuity results for a nonlinear fractional Langevin equation with a weakly singular source, J. Integral Equ. Appl. 33 (2021), no. 3, 349–369.
- [16] N. M. Dien and D. D. Trong, On the nonlinear generalized Langevin equation involving ψ-Caputo fractional derivatives, Fractals 29 (2021), no. 6, 2150128.
- [17] N. M. Dien, Nonlinear Langevin time-delay differential equations with generalized Caputo fractional derivatives, Filomat. 37 (2023), no. 19, 6487–6495.
- [18] A. Kumar, M. Muslim, and R. Sakthivel, Controllability of second-order nonlinear differential equations with non-instantaneous impulses, J. Dyn. Control Syst. 24 (2018), 325–342.
- [19] A. Kumar, M. Muslim, and R. Sakthivel, Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments, Math. Methods Appl. Sci. 41 (2018), 4259–4272.
- [20] H. A. Hammad and M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Fract. 7 (2023), 92.
- [21] H. A. Hammad, H. Aydi, H. Isik, and M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math. 8 (2023), no. 3, 6913–6941.
- [22] H. A. Hammad and M. De la Sen, Analytical solution of Urysohn integral equations by fixed point technique in complex valued metric spaces, Mathematics 7 (2019), no. 9, 852.
- [23] M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, and H. M. Baskonus, On the approximate controllability results for fractional integro-differential systems of order 1
- [24] Y.-K. Ma, K. Kavitha, W. Albalawi, A. Shukla, K. S. Nisar, and V. Vijayakumar, An analysis on the approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces, Alex. Eng. J. 61 (2022), no. 9, 7291–7302.
- [25] A. Shukla, N. Sukavanam, and D. N. Pandey, Controllability of semilinear stochastic system with multiple delays in control, IFAC Proc. 47 (2014), no. 1, 306–312.
- [26] A. Shukla, N. Sukavanam, and D. N. Pandey, Approximate controllability of semilinear stochastic control system with nonlocal conditions, Nonlinear Dynamics Sys. Theory 15 (2015), no. 3, 321–333.
- [27] M. Bohner and N. Wintz, Controllability and observability of time-invariant linear dynamic systems, Math. Bohem. 137 (2012), 149–163.
- [28] J. Davis, I. Gravangne, B. Jackson, and R. Marks, II. Controllability, observability, realizability, and stability of dynamic linear systems, Electron. J. Differential Equations 2009 (2009), 165.
- [29] B. Wongsaijai, P. Charoensawan, T. Suebcharoen, and W. Atiponrat, Common fixed point theorems for auxiliary functions with applications in fractional differential equation, Adv. Differential Equations 2021 (2021), 503.
- [30] I. Uddin, C. Garodia, T. Abdeljawad, and N. Mlaiki, Convergence analysis of a novel iteration process with application to a fractional differential equation, Adv. Cont. Discr. Mod. 2022 (2022), 16.
- [31] R. Dhayal and Z. Quanxin, Stability and controllability results of ψ-Hilfer fractional integrodifferential systems under the influence of impulses, Chaos Solitons Frac. 168 (2023), 113105.
- [32] T. A. Aljaaidi, D. B. Pachpatte, W. Shatanawi, M. S. Abdo, and K. Abodayeh, Generalized proportional fractional integral functional bounds in Minkowski’s inequalities, Adv. Differential Equations 2021 (2021), 419.
- [33] S. S. Bluehwan, S. L. Shaikh, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. A. Almalahi, et al. Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Math. 7 (2022), no. 2, 1856–1872.
- [34] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math. 26 (2010), 103–107.
- [35] A. Ali, K. Shah, and T. Abdeljawad, Study of implicit delay fractional differential equations under anti-periodic boundary conditions, Adv. Differential Equations 2020 (2020), 1–16.
- [36] M. Houas and M. E. Samei, Existence and Mittag-Leffler-Ulam-stability results for Duffing type problem involving sequential fractional derivatives, Int. J. Appl. Comput. Math. 8 (2022), no. 4, 185.
- [37] M. I. Abbas, Existence and uniqueness of Mittag-Leffler-Ulam stable solution for fractional integro-differential equations with nonlocal initial conditions, European J. Pure Appl. Math. 8 (2015), no. 4, 478–498.
- [38] M. Ahmad, J. Jiang, A. Zada, Z. Ali, Z. Fu, and J. Xu, Hyers-Ulam-Mittag-Leffler stability for a system of fractional neutral differential equations, Dis. Dyn. Nature Soc. 2020 (2020), no. 1, 2786041.
- [39] A. Mohanapriya, C. Park, A. Ganesh, and V. Govindan, Mittag-Leffler-Hyers-Ulam stability of differential equation using Fourier transform, Adv. Differential Equations, 2020 (2020), 389.
- [40] J. Wang and Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization. 63 (2014), no. 8, 1181–1190.
- [41] K. Balachandran, S. Kiruthika, and J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci. 33 (2013), 712–720.
- [42] D. Vivek, K. Kanagarajan, and S. Harikrishnan, Existence and uniqueness results for nonlinear neutral pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl. 2018 (2018), 151–157.
- [43] I. Ahmad, J. J. Nieto, G. U. Rahman, and K. Shah, Existence and stability for fractional order pantograph equations with nonlocal conditions, Electron. J. Differential Equations 132 (2020), 1–16.
- [44] M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineq. 4 (2020), no. 1, 1–10.
- [45] D. Vivek, K. Kanagarajan, and S. Sivasundaram, Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Studies. 23 (2016), no. 4, 685–698.
- [46] A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math. 24 (1997), 295–308.
- [47] A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math. 4 (1993), no. 1, 1–38.
- [48] M. Sezer, S. Yalcinbas, and N. Sahin, Approximate solution of multi-pantograph equation with variable, J. Comput. Appl. Math. 214 (2008), 406–416.
- [49] Z. H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A. 372 (2008), 6475–6479.
- [50] L. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [51] S. Y. Lin, Generalized Gronwall inequalities and their applications to fractional differential equations, J. Ineq. Appl. 549 (2013), no. 1, 549.
- [52] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5049f8d-0274-41f4-9ae2-4ba8453646cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.