PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power quality analysis in electrical drives and a case study of artificial intelligence prediction algorithm for fault deterrent electrical drives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since electrical drives have become an integral element of any industrial sector, power quality difficulties have been well expected, and delivering genuine quality of the same has proven to be a difficult challenge. Since power quality relies on load side non-linearity and high semiconductor technology consumption, it is a serious concern. The efficiency of the drive segment employed in the sector is increasingly becoming a topic of discussion in today’s market. Numerous reviews of available literature have found problems with the load side as well as with electrical drive proficiency, as a result of the issues listed above. A high level of power quality vulnerability is simply too much. Even the most advanced technology has its limits when it comes to drive operation. Research on the grid-side quality issues of electrical drives is the focus of this article. After field testing of grid power quality, each parametric analysis is performed to identify crucial parameters that can cause industrial drives to fail. Based on this discovery, a machine learning strategy was developed and an artificial intelligence technique was proposed to administer the fault deterrent prediction algorithm. An accurate forecast of anomalous behavior on the grid side ensures safe and dependable grid operation such that shutdown or failure probability is minimized to a greater extent by the results. Additional information gleaned from historical data will prove useful to equipment manufacturers in the future, providing a solution to this problem.
Rocznik
Strony
art. no. e141180
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India
  • Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India
Bibliografia
  • [1] ABB, “ABB Product Guide,” no. 877.
  • [2] R.K.B. Prakash Ayyappan, “Design and analysis of the performance of multi-source interconnected electrical power system using resilience random variance reduction technique,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137941, 2021, doi: 10.24425/bpasts.2021.137941.
  • [3] C.S. Balaji Varadharajan, “Power quality management in electrical rid using SCANN controller-based UPQC,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140257, 2022, doi: 10.24425/bpasts.2022.140257.
  • [4] J.Y. Chan and J.V. Milanović, “Severity indices for assessment of equipment sensitivity to voltage sags and short interruptions,” 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1–7, doi: 10.1109/PES.2007.385457.
  • [5] I.S. by IEC, “International Standard Internationale ISO Vocabulary,” vol. 2001, 2001.
  • [6] M.J. Robinson, C. Veeramani, and S. Vasanthi, “A New Approach for Solving Intuitionistic Fuzzy Optimization Problems,” vol. 39, no. 11, pp. 135–159, 2019.
  • [7] Mie Mie Thet Thwin and Tong-Seng Quah, “Application of neural network for predicting software development faults using object-oriented design metrics,” Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP ’02, 2002, vol. 5, pp. 2312–2316 doi: 10.1109/ICONIP.2002.1201906.
  • [8] J. Woo, S.H. Jo, J.H. Jeong, M. Kim, and G.S. Byun, “A Study on Wearable Airbag System Applied with Convolutional Neural Networks for Safety of Motorcycle,” J. Electr. Eng. Technol., vol. 15, no. 2, pp. 883–897, 2020, doi: 10.1007/s42835-020-00353-5.
  • [9] R.B. Shaik and E.V. Kannappan, “Application of Adaptive Neuro-Fuzzy Inference Rule-based Controller in Hybrid Electric Vehicles,” J. Electr. Eng. Technol., vol. 15, no. 5, pp. 1937–1945, 2020, doi: 10.1007/s42835-020-00459-w.
  • [10] Z. Boulghasoul, Z. Kandoussi, A. Elbacha, and A. Tajer, “Fuzzy Improvement on Luenberger Observer Based Induction Motor Parameters Estimation for High Performances Sensorless Drive,” J. Electr. Eng. Technol., vol. 15, no. 5, pp. 2179–2197, 2020, doi: 10.1007/s42835-020-00495-6.
  • [11] P. Wei, Y. Xu, Y. Wu, and C. Li, “Research on classification of voltage sag sources based on recorded events,” CIRED – Open Access Proc. J., vol. 2017, no. 1, pp. 846–850, 2017, doi: 10.1049/oap-cired.2017.0907.
  • [12] V. Bolgova, A. Leonov, and D. Charkov, “Influence of VFD parameters on voltage stresses in low voltage windings,” 2016, doi: 10.1109/RTUCON.2016.7763153.
  • [13] V.A. Skolota and G.S. Zinovev, “Detecting voltage swell, interruption and sag,” 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), 2018, pp. 6403–6408, doi: 10.1109/EDM.2018.8434940.
  • [14] D.H. Tourn, J.C. Amatti, J.C. Gómez, and E.F. Florena, “Behavior of the scheme source – Capacitor – Induction motor when voltage sags and short interruptions take place,” 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 2006, pp. 1–5, doi: 10.1109/TDCLA.2006.311576.
  • [15] M. Demir, M. Iltir, and A. B. Yildiz, “Determination of the effect of short-term interruptions in mains voltage on the reliability of consumer electronics products,” 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2017, pp. 1–5, doi: 10.1109/EEEIC.2017. 7977551.
  • [16] M. Al-Badri, P. Pillay, and P. Angers, “A Novel Technique for in Situ Efficiency Estimation of Three-Phase im Operating with Unbalanced Voltages,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 2843–2855, 2016, doi: 10.1109/TIA.2016.2533599.
  • [17] M. Messiha, C. Baraket, A. Massoud, A. Iqbal, and R. Soliman, “Dynamic voltage restorer for voltage sag mitigation in oil & gas industry,” 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), 2015, pp. 1–6, doi: 10.1109/SGRE.2015.7208717.
  • [18] M. Adamczyk and T. Orlowska-Kowalska, “Influence of the stator current reconstruction method on direct torque control of induction motor drive in current sensor postfault operation,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140099, 2022, doi: 10.24425/bpasts.2022.140099.
  • [19] P. Kurnyta-Mazurek, T. Szolc, M. Henzel, and K. Falkowski, “Control system with a non-parametric predictive algorithm for a high-speed rotating machine with magnetic bearings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e138998, 2021, doi: 10.24425/bpasts.2021.138998.
  • [20] D. Rachev, L. Dimitrov, and D. Koeva, “Study of the Influence of Supply Voltae on the Dynamic Behavior of induction Motor Low Voltage Drive,” Int. Sci. J.-Mach. Technol. Mater., vol. 209, no. 5, pp. 206–209, 2017.
  • [21] J. Meyer, A.M. Blanco, M. Domagk, and P. Schegner, “Assessment of Prevailing Harmonic Current Emission in Public Low-Voltage Networks,” IEEE Trans. Power Deliv., vol. 32, no. 2, pp. 962–970, 2017, doi: 10.1109/TPWRD.2016.2558187.
  • [22] F.L. Hoadley, R.F. McElveen, and T.R. Obermann, “Application considerations for operating VSI-FED MV motors in hazardous locations,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1656–1668, 2017, doi: 10.1109/TIA.2016.2630019.
  • [23] Y. Ma and G.G. Karady, “A single-phase voltage sag generator for testing electrical equipments,” 2008 IEEE/PES Transmission and Distribution Conference and Exposition, 2008, pp. 1–5, doi: 10.1109/TDC.2008.4517185.
  • [24] J. Kabziński, T. Orłowska-Kowalska, A. Sikorski, and A. Bartoszewicz, “Adaptive, predictive and neural approaches in drive automation and control of power converters“, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 959–962, doi: 10.24425/bpasts.2020.134657.
  • [25] T. Pajchrowski, P. Siwek, and A. Wójcik, “Adaptive controller design for electric drive with variable parameters by Reinforcement Learning method“, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1019–1030, doi: 10.24425/bpasts.2020.134667.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5040eb9-4b33-4422-b0bd-9dd2c3a8a8e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.