Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the task of safely guiding a ship, taking into account the movement of many other marine units. An optimally neural modified algorithm for determining a safe trajectory is presented. The possible shapes of the domains assigned to other ships as traffic restrictions for the particular ship were subjected to a detailed analysis. The codes for the computer program Neuro-Constraints for generating these domains are presented. The results of the simulation tests of the algorithm for a navigational situation are presented. The safe trajectories of the ship were compared at different distances, changing the sailing conditions and ship sizes.
Rocznik
Tom
Strony
185--191
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Gdynia Maritime University, Gdynia, Poland
Bibliografia
- [1] „Ship Domain – International Dictionary of Marine”, IALA – AISM International Association of Marine Aids to Navigation and Lighthouse Authorities, 2023 https://www.ialaaism. org/wiki/dictionary/index.php/Ship_Domain.
- [2] M. Jurdzinski, “The shipʹs domain in marine navigation”, Works of the Navigation Faculty of Gdynia Maritime University, no. 32, pp. 9‐20, 2017 (in polish), doi: 10.12716/1002.32.01.
- [3] E. M. A. Goodvin, “Statistical study of ship domains”, Journal of Navigation, , vol. 28, pp. 328‐334, 1975, ISSN: 0373‐4633.
- [4] P. V. Davis, M. J. Dove and C. T. Stockel, “A computer simulation of marine traffic using domains and areas”, Journal of Navigation, , no. 33, pp. 215‐222, 1980, doi: 10.1017/S0373463300035220.
- [5] B. A. Colley, R. G. Curtis and C. T. Stockel, “Manoeuvring Times, Domains and Arenas”, Journal of Navigation, vol. 36, pp. 324–328, 1983, doi:10.1017/S0373463300025030.
- [6] R. Szlapczynski, P. Krata and J. Szlapczynska, “A Ship Domain‐Based Method of Determining Action Distances for Evasive Manoeuvres in Stand‐On Situations”, Journal of Advanced Transportation, vol. 2018, doi: 10.11.55/2018/3984962.
- [7] M. Starup, “Ship Domain in Open waters‐ the size and shape of the navigator’s declarative ship domain” University of South‐Eastern Norway, Faculty of Technology, Natural Sciences and Maritime Sciences, Master Thesis, May 2018.
- [8] P. F. Chen, P. van Gelder and J. M. Mou, “Integration of Elliptical Ship Domains and Velocity Obstacles for Ship Collision Candidate Detection”, TransNav ‐ the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 13, no. 4, pp. 751‐758, 2019, doi:10.12716/1001.13.04.07.
- [9] Y. Y. Wang, „An Empirical Model of Ship Domain for Navigation in Restricted Waters”, National University of Singapore, Ph. D. Thesis, Singapore, 22 August 2012, http://scholarbank.nus.edu.sg/handle/10635/36604.
- [10] Z. Pietrzykowski and M. Wielgosz, “Effective ship domain – Impact of ship size and speed”, Ocean Engineering, vol. 219, 108423, 2021, doi.10.1016/j.oceaneng.2020.108423.
- [11] M. Wielgosz and Z. Pietrzykowski, “The ship domain in navigational safety assessment”, PLoS ONE, vol. 17, no. 4, 2022, e0265681, doi:10.1371/journal.pone.0265681.
- [12] K. Marcjan, L. Gucma and D. Kotkowska, „The Collision Risk Management Method for Ships Navigating on Coastal Waters Based on Ship Domain and Near‐Miss Concept”, European Research Studies Journal , vol. XXIV, no. 4, pp. 127‐146, 2021, doi: 10.35808/ersj/2567.
- [13] A. Hörteborn, J. W. Ringsberg, M. Svanberg, and H. Holm, “A Revisit of the Definition of the Ship Domain based on AIS Analysis”, The Journal of Navigation, vol. 72, no. 3, pp. 777‐794, 2019, doi:10.1017/S0373463318000978.
- [14] E. Tu, G. Zhang, L. Rachmawati, E. Rajabally and G. B. Huang, ʺExploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology,ʺ IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 5, pp. 1559‐1582, May 2018, doi: 10.1109/TITS.2017.2724551.
- [15] R. Smierzchalski, “Ships domains as a collision risk at sea in the evolutionary trajectory planning”, in Risk Analysis II, WIT Press, pp. 43‐52, 2000, doi: 10.2495/RISK000041.
- [16] X. Zhu, H. Xu and J. Lin, “Domain and Its Model Based on Neural Networks” Journal of Navigation, vol. 54, no.1, pp. 97‐103, 2001, doi:10.1017/S0373463300001247.
- [17] “COLREG : Convention on the International Regulations for Preventing Collisions at Sea, 1972”, International Maritime Organization: London, 2002, ISBN: 928‐0‐151‐38X.
- [18] J. Lisowski, “Multistage Dynamic Optimization with Different Forms of Neural‐State Constraints to Avoid Many Object Collisions Based on Radar Remote Sensing”, Remote Sensing, vol. 12, no. 6, 2020, pp. 1‐13. doi: 10.3390/rs12061020.
- [19] J. Lisowski, “Optimization Methods in Maritime Transport and Logistics”, Polish Maritime Research, vol. 25, no. 4, pp. 30‐38, 2018, doi: 10.2478/pomr‐2018‐0129.
- [20] J. Lisowski, “Synthesis of a Path‐Planning Algorithm for Autonomous Robots Moving in a Game Environment during Collision Avoidance”, Electronics, vol. 10, no. 6, 2021, pp. 1‐14. doi: 10.3390/electronics10060675.
- [21] J. Lisowski, “Game Control Methods Comparison when Avoiding Collisions with Multiple Objects Using Radar Remote Sensing”, Remote Sensing, vol. 12, no. 10, pp. 1‐19, 2020, doi: 10.3390/rs12101573.
- [22] A. Lew and H. Mauch, “Dynamic Programming – A Computational Tool”, Springer: Berlin, Germany, 2007, ISBN: 978‐3‐540‐37014‐7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4fabef8-6c7b-4438-96a1-8a19d7892185