PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sporządzanie mieszanki betonowej w wysokich temperaturach: urabialność, wytrzymałość i trwałość

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Concrete mixing at elevated temperature: workability, strength and durability
Języki publikacji
PL EN
Abstrakty
PL
Zmniejszenie wytrzymałości po dłuższym okresie, a nawet pogorszenie trwałości betonu może nastąpić w przypadku poddania go obróbce cieplnej. Jako prawdopodobny powód podaje się, między innymi, powstawanie gradientów temperatury w betonie, w trakcie obróbki cieplnej. W celu wyeliminowania naprężeń cieplnych zaproponowano następujący tok postępowania w tej pracy: składniki mieszanki betonowej ogrzewa się do 80°C, a próbki formuje się w gorących formach i natychmiast poddaje obróbce parą w 80°C w ciągu 4 godzin. Następnie, po ochłodzeniu przechowuje się je w powietrzu w temperaturze 20°C i W. W. > 95% aż do czasu pomiarów. Dla porównania, w przypadku drugiego betonu składniki mieszano w 20°C, a próbki po związaniu betonu poddawano obróbce parą w 80°C, stosując klasyczną technologię. Trzeci beton przygotowano mieszając składniki w 20°C oraz przechowując beton w powietrzu, w temperaturze 20°C i W.W. > 95%. Wszystkie betony uzyskano równolegle z cementu portlandzkiego i hutniczego. Stwierdzono, że zaproponowana technologia, polegająca na podgrzewaniu składników mieszanki i formowaniu próbek w 80°C oraz ich obróbce parą w tej temperaturze, jest korzystna dla betonu z cementu hutniczego, tak w odniesieniu do wczesnej wytrzymałości jak i po dłuższym twardnieniu oraz w odporności na korozję siarczanową.
EN
Loss of durability and strength after longer time of hardening can occur when concrete is heat treated. An explanation is the presence of fine cracks caused, among other, by the temperature gradient in concrete, during thermal treatment. In order to avoid thermal stresses, the following treatment was proposed in the present study: concrete mix ingredients were heated at 80°C and test specimens, were cast in the hot moulds and immediately steam treated at 80°C tor 4 hours. They were, then, cooled and cured at 20°C and R.H. > 95% up to testing age. For comparison second concrete components were mixed at 20°C. Test specimens, after concrete set, were steam treated at 80°C, in a classic manner. The third concrete was mixed at 20°C and cured in air at 20°C and R.H. > 95%. All concretes were made parallel of Portland cement and slag cement. It was found that the effect of the proposed treatment (heating the concrete mix ingredients) on the resistant to sulphate attack and on early strength as well as after longer hardening was very favourable for slag cement concrete.
Czasopismo
Rocznik
Strony
115--129
Opis fizyczny
Bibliogr. 59 poz., il., tab.
Twórcy
autor
  • Department of Engineering for Innovation, University of Salento, Lecce, Italy
autor
  • Studio Mairo, Roma, Italy
Bibliografia
  • 1. M. A. Abd-El Aziz, S. AbdEl.Aleem, M. Heikal, Physico-chemical and mechanical characteristics of pozzolanic cement pastes and mortars hydrated at different curing temperatures. Constr. Build. Mater., 26, 1, 310-316 (2012).
  • 2. C. M. Aldea, F. Young, K. Wang, S. P. Shah, Effects of curing conditions on properties of concrete using slag replacement. Cem. Concr. Res., 30, 3, 65-472 (2000).
  • 3. R. F. M. Bakker, Permeability of Blended Cement Concretes. In: Fly Ash, Silica Fume, Slag & Other Mineral By-Products in Concrete. ACI SP-79 Vol I, 589-605, Ed. V. M. Malhotra 1983.
  • 4. R. Barbarulo, H. Peycelon, S. Leclercq, Chemical equilibria between C–S–H and ettringite, at 20 and 85. Cem. Concr. Res., 37, 7, 1176-1181 (2007).
  • 5. S. J. Barnett, M. N. Soutsos, S. G. Millard, J. H. Bungey, Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cem. Concr. Res., 36, 3, 434-440 (2006).
  • 6. H. Binici, O. Aksogân, Sulfate resistance of plain and blended cement. Cem. Concr. Compos., 28, 1, 39–46 (2006).
  • 7. Ö. Çakır, F. Aköz, Effect of curing conditions on the mortars with and without GGBFS, Constr. Build. Mater., 22 3, 308–314 (2008).
  • 8. F. Cassagnabère, M. Mouret, G. Escadeillas, Early hydration of clinker–slag–metakaolin combination in steam curing conditions, relation with mechanical properties, Cem. Concr. Res., 39, 12, 1164–1173 (2009).
  • 9. J.-K. Chen, M.-Q. Jiang, Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion. Constr. Build. Mater., 23, 2, 812–816 (2009).
  • 10. M. Collepardi, A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos., 25, 4-5, 401–407 (2003).
  • 11. M. Collepardi, Reply to Discussion by W.G. Hime on “A state-of-the-art review of delayed ettringite attack on concrete” [Cem. Concr. Compos., 25, 4-5, 401-407 (2003)] Cem. Concr. Compos., 26 6, 755 (2004).
  • 12. Y. Dan, T. Chikada, K. Nagahama, Properties of steam cured concrete used with ground granulated blast-furnace slag. CAJ Proceedings of Cement and Concrete, No 45, 222-227 (1991).
  • 13. S. O. Ekolu, M. D. A. Thomas, R. D. Hooton, Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism. Cem. Concr. Res., 36, 4, 688-696 (2006).
  • 14. Y. Elakneswaran, T. Nawa, K. Kurumisawa, Zeta potential study of paste blends with slag. Cem. Concr. Compos., 31, 1, 72-76 (2009).
  • 15. T. K. Erdem, L. Turanli, T. Y. Erdogan, Setting time: an important criterion to determine the length of the delay period before steam curing of concrete. Cem. Concr. Res., 33, 5, 741-745 (2003).
  • 16. J. I. Escalante-Garcia, J. H. Sharp, Effect of temperature on the hydration of the main clinker phases in portland cements: part ii, blended cements. Cem. Concr. Res., 28, 9, 1259-1274 (1998).
  • 17. K. Ezziane, A. Bougara, A. Kadri, H. Khelafi , E. Kadri, Compressive strength of mortar containing natural pozzolan under various curing temperature. Cem. Concr. Comp., 29, 8, 587-593 (2007).
  • 18. C. Famy, PhD Thesis, Imperial College, Materials Department, London 1999.
  • 19. M. L. Gambhir, Concrete Technology – Theory and Practice, p. 344, Fourth Edition, Publ. Tata McGraw Hill, New Dehli 2009.
  • 20. H. Y. Ghorab, D. Heinz, U. Ludwig, T. Meshendahl, A. Wolter, 7th ICCC Paris, vol. IV, p. 496, Paris 1980.
  • 21. Z.-M. He, G.-C. Long, Y.-J. Xie, J.-Z. Liu, Water sorptivity of steam curing concrete. Jianzhu Cailiao Xuebao/Journal of Building Materials, 15, 2, 190-195 (2012) Cited By in Scopus.
  • 22. J. Hill, J. H. Sharp, The mineralogy and microstructure of three composite cements with high replacement levels. Cem. Concr. Compos., 24, 2, 191-199 (2002).
  • 23. E. Holt, M. Leivo, Cracking risks associated with early age shrinkage. Cem. Concr. Compos., 26, 5, 521–530 (2004).
  • 24. http://www.concreteconstruction.net/precast-concrete/demand-forprecast-concrete-products-to-reach-113-billion-in-2015.aspx
  • 25. Z. Jiang, H. Xu, P. Wang, G. Long, Y. Xie, Hydration process of compound cementitious materials under steam curing condition. J. Chin. Ceram. Soc., 38, 9, 1702-1706 (2010).
  • 26. K. J. Kim, S. H. Han, Y. S. Song, Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results. Cem. Concr. Res., 32, 7, 1087-1094 (2002).
  • 27. W. A. Klemm, F. M. Miller, 10th ICCC Goeteborg, vol. IV, paper 4IV059, Goeteborg 1997.
  • 28. Kulkarni, SB., Pereira, C. Significance of Curing of Concrete for Durability of Structures. NBM Construction information. India’s No 1 NBMCW August 2011.
  • 29. B. Liu, Y. Xie, J. Li, Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cem. Concr. Res., 35, 5, 994-998 (2005).
  • 30. F. W. Locher, 7th ICCC, General Report, Theme II, IV49, Paris 1980.
  • 31. G. C. Long, Z. M. He, A. Omran, Heat damage of steam curing on the surface layer of concrete. Mag. Concr. Res., 64, 11, 995-1004 (2012).
  • 32. B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem. Concr. Res., 37, 4, 483-491 (2007).
  • 33. P. K. Mehta, D. Manmohan, 7th ICCC, Paris vol. III, p. VII-1, Paris 1980.
  • 34. I. Meland, H. Justnes, J. Lindgärd, Durability problems related to delayed ettringite formation and/or alkali aggregate reactions. Proc. 10th ICCC Goethenburg, paper 4iv064, Goethenburg 1997.
  • 35. W. H. Mirza, S. I. Al-Noury, W. H. Al-Bedawi, Temperature Effect on Strength of Mortars and Concrete Containing Blended Cements. Cem. Concr. Compos., 13, 3, 197-202 (1991).
  • 36. A. M. Neville, Properties of Concrete. Pp. 483-4, Fourth Edition. Essex, England, Longman Group Limited 1995.
  • 37. R. E. Oberholster, J. H. P. Wan Aaardt, M. P. Brandt, in “Structure and Performance of Cements (ed P. Barnes) s. 365, Appl. Science Publ., London 1983.
  • 38. S. S. Park, S. J. Kwon, S. H. Jung, S. W. Lee, Modeling of water permeability in early aged concrete with cracks based on micro pore structure. Constr. Build. Mater., 27, 1, 597-604 (2012).
  • 39. A. Pavoine, X. Brunetaud, L. Divet, The impact of cement parameters on Delayed Ettringite Formation. Cem. Concr. Compos., 34, 4, 521–528 (2012).
  • 40. A. Pavoine, L. Divet, S. Fenouillet, A concrete performance test for delayed ettringite formation: Part I optimization. Cem. Concr. Res., 36, 12, 2138-2143 (2006).
  • 41. J. Plank, C. Hirsch, Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem. Concr. Res., 37 4, 537-542 (2007).
  • 42. V. S. Ramachandran, N. P. Mailvaganam, New Developments in Chemical Admixtures, in Advances in Concrete Technology, 859-898, Ed. V. M. Malhotra 1992. Canmet. Canada 1992.
  • 43. T. Ramlochan, M. D. A. Thomas, R. D. Hooton, The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part II: Microstructural and microchemical investigations. Cem. Concr. Res., 34 8, 1341-1356 (2004).
  • 44. T. Ramlochan, P. Zacarias, M. D. A. Thomas, R. D. Hooton, The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behavior. Cem. Concr. Res., 33, 6, 807-814 (2003).
  • 45. E. Rozière, A. Loukili, R. El Hachem, F. Grondin, Durability of concrete exposed to leaching and external sulphate attacks. Cem. Concr. Res., 39, 12, 1188-1198 (2009).
  • 46. F. Sajedi, H. A. Razak, Comparison of different methods for activation of ordinary Portland cement-slag mortars. Constr. Build. Mater., 25, 1, 30-38 (2011).
  • 47. G. Sant, The influence of temperature on autogenous volume changes in cementitious materials containing shrinkage reducing admixtures. Cem. Concr. Compos., 34, 7, 855-865 (2012).
  • 48. I. Soroka, C. H. Jaegermann, A. Bentur, Short-term steam-curing and concrete later-age strength. Mater. Struct., 11, 2, 93-96 (1978).
  • 49. H. F. W. Taylor, C. Famy, K. L. Scrivener, Delayed ettringite formation. Cem. Concr. Res., 31, 5, 683-693 (2001).
  • 50. H. F. W. Taylor, Cement Chemistry, Acad. Press, London 1991.
  • 51. P. Termkhajornkit, R. Barbarulo, Modeling the coupled effects of temperature and fineness of Portland cement on the hydration kinetics in cement paste. Cem. Concr. Res., 42 3, 526–538 (2012).
  • 52. K. Tosun, B. Baradan, Effect of ettringite morphology on DEF-related expansion. Cem. Concr. Compos., 32, 4, 271–280 (2010).
  • 53. P. J. Wainwright, Properties of fresh and hardened concrete incorporating slag cements. In Cement Replacement Materials, pp. 108-109, Ed. R.N. Swamy 1986.
  • 54. W. Wieker, K. L. Scrivener, 9th ICCC New Delhi, vol. I, p. 449, New Delhi 1992.
  • 55. W. Wieker, R. Herr, H. Schubert, Proc. Int. Coll. “Corrosion of cement paste”, Mogilany 16-17 November (ed. W. Kurdowski), p. 3, Kraków 1994.
  • 56. H. Yazici, M. Y. Yardımcı, S. Aydın, A. S. Karabulut, Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr. Build. Mater., 23, 3, 1223–1231 (2009).
  • 57. B. Yilmaz, Effects of molecular and electrokinetic properties of pozzolans on hydration, ACI Mater J., 106, 2, 128-137 (2009).
  • 58. C. Yu, W. Sun, K. Scrivener, (2013) Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem. Concr. Res., 43, 1, 105–111 (2013).
  • 59. K. S. You, J. W. Ahn, K. H. Lee, S. Goto, Effects of crystallinity and silica content on the hydration kinetics of 12CaO•7Al2O3. Cem. Concr. Compos., 28, 2, 119-123 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4f62d1c-197a-4d87-b1c1-ade8e97480c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.