Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a career track recommender system was proposed using Deep Neural Network model. This study aims to assist guidance counselors in guiding their students in the selection of a suitable career track. It is because a lot of Junior High school students experienced track uncertainty and there are instances of shifting to another program after learning they are not suited for the chosen track or course in college. In dealing with the selection of the best student attributes that will help in the creation of the predictive model, the feature engineering technique is used to remove the irrelevant features that can affect the performance of the DNN model. The study covers 1500 students from the first to the third batch of the K-12 curriculum, and their grades from 11 subjects, sex, age, number of siblings, parent’s income, and academic strand were used as attributes to predict their academic strand in Senior High School. The efficiency and accuracy of the algorithm depend upon the correctness and quality of the collected student’s data. The result of the study shows that the DNN algorithm performs reasonably well in predicting the academic strand of students with a predic-tion accuracy of 83.11%. Also, the work of guidance counselors became more efficient in handling students’ concerns just by using the proposed system. It is concluded that the recommender system serves as a decision tool for counselors in guiding their stu-dents to determine which Senior High School track is suitable for students with the utilization of the DNN model.
Czasopismo
Rocznik
Tom
Strony
55--74
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
autor
- Batangas State University (Computer Science), Philippines, National Research Council of the Philippines – Engineering and Industrial Research
autor
- Batangas State University (Information Technology), Philippines
Bibliografia
- [1] Abarro, J. O. (2016). Factors Affecting Career Track and Strand Choices of Grade 9 Students in the Division of Antipolo and Rizal, Philippines. International Journal of Scientific and Research Publications, 6(6), 51–2250.
- [2] Abu Zohair, L. M. (2019). Prediction of Student’s performance by modelling small dataset size. International Journal of Educational Technology in Higher Education, 16(1), 27. https://doi.org/10.1186/s41239-019-0160-3
- [3] Al-Barrak, M. A., & Al-Razgan, M. (2016). Predicting Students Final GPA Using Decision Trees: A Case Study. International Journal of Information and Education Technology, 6(7), 528–533. https://doi.org/10.7763/ijiet.2016.v6.745
- [4] Al-Radaideh, Q. A., Ananbeh, A. A., & Al-Shawakfa, E. M. (2011). A classification model for predicting the suitable study track for school students. IJRRAS, 8(2), 18788963.
- [5] Alzhrani, N., & Algethami, H. (2019). Fuzzy-Based Recommendation System for University Major Selection. In Proceedings of the 11th International Joint Conference on Computational Intelligence – Volume 1: FCTA (pp. 317–324). Vienna, Austria. https://doi.org/10.5220/0008071803170324
- [6] Asif, R., Merceron, A., & Pathan, M. K. (2015). Investigating performance of students: A longitudinal study. LAK '15: Proceedings of the Fifth International Conference on Learning Analytics And Knowledge (pp. 108–112). ACM International Conference Proceeding Series. https://doi.org/10.1145/2723576.2723579
- [7] Bendangnuksung, & Prabu, D. (2018). Students’ Performance Prediction Using Deep Neural Network. International Journal of Applied Engineering Research, 13(2), 1171–1176.
- [8] Bin Mat, U., Buniyamin, N., Arsad, P. M., & Kassim, R. A. (2014). An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention. 2013 IEEE 5th International Conference on Engineering Education: Aligning Engineering Education with Industrial Needs for Nation Development (ICEED) (pp. 126–130). IEEE. https://doi.org/10.1109/ICEED.2013.6908316
- [9] Durosaro, I. A., & Nuhu, M. A. (2012). An evaluation of the relevance of career choice to school subject selection among school going adolescents in ondo state. Asian Journal Of Management Sciences And Education, 1(2), 140–145.
- [10] Gestiada, G., Nazareno, A., & Roxas-Villanueva, R. M. (2017). Development of a senior high school career decision tool based on social cognitive career theory. Philippine Journal of Science, 146(4), 445-455.
- [11] Gorad, N., Zalte, I., Nandi, A., & Nayak, D. (2017). Career Counseling using Data Mining. International Journal of Engineering Science and Computing, 7(4), 10271–10274.
- [12] Goyal, P., Kukreja, T., Agarwal, A., & Khanna, N. (2015). Narrowing awareness gap by using e-learning tools for counselling university entrants. 2015 International Conference on Advances in Computer Engineering and Applications (pp. 847–851). IEEE. https://doi.org/10.1109/ICACEA.2015.7164822
- [13] Grewal, D.S., & Kaur, K. (2015). Developing an Intelligent Recommendation System for Course Selection by Students for Graduate Courses. Business and Economics Journal, 7(2), 1000209. https://doi.org/10.4172/2151-6219.1000209
- [14] Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm. Procedia Technology, 25, 326–332. https://doi.org/10.1016/j.protcy.2016.08.114
- [15] Hasan, R., Palaniappan, S., Raziff, A. R. A., Mahmood, S., & Sarker, K. U. (2018). Student Academic Performance Prediction by using Decision Tree Algorithm. 2018 4th International Conference on Computer and Information Sciences: Revolutionising Digital Landscape for Sustainable Smart Society (ICCOINS) (pp. 1–5). IEEE. https://doi.org/10.1109/ICCOINS.2018.8510600
- [16] Jauhari, F., & Supianto, A. A. (2019). Building student’s performance decision tree classifier using boosting algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 14(3), 1298–1304. https://doi.org/10.11591/ijeecs.v14.i3.pp1298-1304
- [17] Khasanah, A. U., & Harwati. (2017). A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques. IOP Conference Series: Materials Science and Engineering, 215(1), 012036. https://doi.org/10.1088/1757-899X/215/1/012036
- [18] Laguador, J. (2014). Examination of Influence and Intention towards Lyceum of the Philippines University and Career Choice of General Engineering Students. International Journal of Management Sciences, 3(11), 847–855.
- [19] Li, L., & Zhang, X. (2010). Study of data mining algorithm based on decision tree. 2010 International Conference on Computer Design and Applications (V1-155-V1-158). IEEE. https://doi.org/10.1109/ICCDA.2010.5541172
- [20] Mhetre, V., & Nagar, M. (2018). Classification based data mining algorithms to predict slow, average and fast learners in educational system using WEKA. Proceedings of the International Conference on Computing Methodologies and Communication (ICCMC 2017) (pp. 475–479). IEEE. https://doi.org/10.1109/ICCMC.2017.8282735
- [21] Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students’ Academic Performance Using Data Mining Techniques. International Journal of Modern Education and Computer Science, 8(11), 36–42. https://doi.org/10.5815/ijmecs.2016.11.05
- [22] Natividad, M. C. B., Gerardo, B. D., & Medina, R. P. (2019). A fuzzy-based career recommender system for senior high school students in K to 12 education. IOP Conference Series: Materials Science and Engineering, 482(1), 012025. https://doi.org/10.1088/1757-899X/482/1/012025
- [23] Nazareno, A. L., Lopez, M. J. F., Gestiada, G. A., Martinez, M. P., & Roxas-Villanueva, R. M. (2019). An artificial neural network approach in predicting career strand of incoming senior high school students. Journal of Physics: Conference Series, 1245(1), 012005. https://doi.org/10.1088/1742-6596/1245/1/ 012005
- [24] Oancea, B., Dragoescu, R., & Ciucu, S. (2013). Predicting students ’ results in higher education using neural networks. International Conference on Applied Information and Communication Technology (pp. 190–193). Jelgava (Latvia).
- [25] Obsie, E. Y., & Adem, S. A. (2018). Prediction of Student Academic Performance using Neural Network, Linear Regression and Support Vector Regression: A Case Study. International Journal of Computer Applications, 180(40), 975–8887.
- [26] Okubo, F., Yamashita, T., Shimada, A., & Konomi, S. (2017). Students’ performance prediction using data of multiple courses by recurrent neural network. Proceedings of the 25th International Conference on Computers in Education, ICCE 2017 - Main Conference Proceedings (pp. 439–444). Asia-Pacific Society for Computers in Education.
- [27] Pal, S. (2011). PER-07: A prediction for performance improvement using classification. India – Chapter III. Student Related Variables, 9(4).
- [28] Piad, K. C., Dumlao, M., Ballera, M. A., & Ambat, S. C. (2016). Predicting IT employability using data mining techniques. 2016 3rd International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC) (pp. 26–30). IEEE. https://doi.org/10.1109/DIPDMWC.2016.7529358
- [29] Qamhieh, M., Sammaneh, H., & Demaidi, M. N. (2020). PCRS: Personalized Career-Path Recommender System for Engineering Students. IEEE Access, 8, 214039–214049. https://doi.org/10.1109/ACCESS.2020.3040338
- [30] Rafanan, R. J. L., De Guzman, C. Y., & Rogayan, D. V. (2020). Pursuing stem careers: Perspectives of senior high school students. Participatory Educational Research, 7(3), 38–58. https://doi.org/10.17275/per.20.34.7.3
- [31] Razak, T. R., Hashim, M. A., Noor, N. M., Halim, I. H. A., & Shamsul, N. F. F. (2014). Career path recommendation system for UiTM Perlis students using fuzzy logic. 2014 5th International Conference on Intelligent and Advanced Systems: Technological Convergence for Sustainable Future (pp. 1–5). IEEE. https://doi.org/10.1109/ICIAS.2014.6869553
- [32] Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers and Education, 137(January), 32–47. https://doi.org/10.1016/j.compedu.2019.04.001
- [33] Roy Montebon, D. T. (2014). K12 Science Program in the Philippines: Student Perception on its Implementation. International Journal of Education and Research, 2(12), 153–164.
- [34] Sarvepalli, S. S. K. (2015). Deep Learning in Neural Networks: The science behind an Artificial Brain. https://doi.org/10.13140/RG.2.2.22512.71682
- [35] Sulaiman, M. S., Tamizi, A. A., Shamsudin, M. R., & Azmi, A. (2019). Course recommendation system using fuzzy logic approach. Indonesian Journal of Electrical Engineering and Computer Science, 17(1), 365–371. https://doi.org/10.11591/ijeecs.v17.i1.pp365-371
- [36] Sulaiman, S. (2020). Prediction Students ’ Performance in Elective Subject Using Decision Tree Method. Journal of Asian Islamic Higher Institutions (JAIH), 5(1).
- [37] Sulaiman, S., Shibghatullah, A. S., & Rahman, N. A. (2017). Prediction of students’ performance in elective subject using data mining techniques. Proceedings of Mechanical Engineering Research Day 2017 (pp. 222–224).
- [38] Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., & Schmidt-Thieme, L. (2010). Recommender system for predicting student performance. Procedia Computer Science, 1(2), 2811–2819. https://doi.org/10.1016/j.procs.2010.08.006
- [39] Varade, R. V., & Thankanchan, B. (2021). Academic Performance Prediction of Undergraduate Students using Decision Tree Algorithm. SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, 13(SUP 1), 97–100. https://doi.org/10.18090/samriddhi.v13is1.22
- [40] Vijayalakshmi, V., & Venkatachalapathy, K. (2019). Comparison of Predicting Student‘s Performance using Machine Learning Algorithms. International Journal of Intelligent Systems and Applications, 11(12), 34–45. https://doi.org/10.5815/ijisa.2019.12.04
- [41] Yi, H., Shiyu, S., Duan, X., & Chen, Z. (2017). A study on Deep Neural Networks framework. Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2016 (pp. 1519–1522). IEEE. https://doi.org/10.1109/IMCEC.2016.7867471
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4f487d4-14b5-441c-a6b3-2255e4af81f6