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1. Introduction

Mobile robots have been successfully applied in many areas such 
as medical and military applications, space exploration, public 
and domestic duties. They can perform difficult and hazardous 
tasks with complex requirements and often have to do so auto-
nomously, without the aid of a human operator. To function 
in that manner they must be able to navigate the environment 
they are placed in.

Collision-free path planning plays an important role in mobile 
robots navigation and is often a fundamental requirement for 
proper task execution. The main goal of such planning in an 
environment with static (stationary) and dynamic (moving) 
obstacles is to find a suitable movement path from a starting 
location to a destination, while avoiding the collision with any 
of these objects. This complex task poses many difficulties: 
computational complexity, adaptation to changing environment 
and determining a reasonable evaluation function for the gene-
rated path.

Path planning is an active research area and many methods 
have been developed to deal with this problem. They can be 
classified into classical and heuristic based search algorithms [1], 
mainly discerned by the type of optimization techniques utilized.

Recently some classical approaches, such as cell decom-
position [2], potential field method [3–5], road map [6] and 

sub goal network have been presented in the field of mobile 
robotics. In a cell decomposition method a two-dimensional 
map is divided into several grids and the path is created 
in them. Another case of a classical approach is a poten-
tial field method in which the controlled robot is attracted 
by the destination while simultaneously being repelled by 
the obstacles.

These path planning algorithms suffer from some drawbacks 
[1], e.g., a solution may not be optimal because the algorithm 
gets stuck in local minima or a new solution has to be gene-
rated again when the environment changes and therefore the 
original path can become infeasible.

As a result, many heuristic based methods, such as fuzzy 
logic [7], artificial neural network [8], nature inspired algo-
rithms [9–12] and hybrid algorithms were created. These 
methods can overcome drawbacks of the classical ones, but 
they do not guarantee to find the best solution. Still, the 
result can be sufficiently close to the optimal one. In this 
paper the authors used one of those methods – the Particle 
Swarm Optimization algorithm; it serves as a base solver for 
collision-free path planning problem.

Particle Swarm Optimization (PSO) is a metaheuristic algo-
rithm which is inspired by the social foraging behavior of 
some animals such as bird flocking and fish schooling. It was 
developed by Kennedy and Eberhart in 1995 and its descrip-
tion is presented in [13]. Since then, many approaches have 
been suggested by the researches to solve the collision-free 
path planning problem using the PSO algorithm [11, 14–17].

Further sections of this paper are arranged as follows: Sec-
tion 2 describes the goal of this article, overall concept of 
the designed algorithm, workspace definition and world data 
preprocessing. Section 3 presents simulation results. Section  4 
contains hardware information, control system description and 
real-world experiment results. Conclusions are presented in 
the last section (Section 5).
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2. Problem Description

In this article the following problem is considered: in a two-
-dimensional workspace the shortest collision-free path is to be 
found. The path should display a smooth curvature to ensure 
its realizability. The controlled robot, circular in shape, is to 
traverse this workspace from its initial position to an arbitrary 
destination point (Fig. 1). The environment is populated by 
static and dynamic obstacles (also circular). While full infor-
mation about the positions of all objects in the workspace is 
available, the kinodynamic properties of the dynamic obstacles 
are unknown and no attempt is made to identify them. The 
task of finding this collision-free path is the responsibility of 
a path-generating algorithm, development of which is the focal 
point of this article.

obstacles. The evaluation of the world state is based on the 
collected data, which is earlier preprocessed and transformed 
(Fig. 3). A “state change” event in the environment occurs 
when a change in position of any object is greater than dSC. If 
this condition is met the program checks whether the straight 
path is not obstructed by the obstacles. If it is not, it beco-
mes the new path. In the opposite case, the transformed data 
is used as an optimization data for the Particle Swarm Opti-
mization algorithm. The PSO routine searches for an optimal 
solution minimizing a fitness function and generates a reference 

Fig. 1. Problem presentation
Rys. 1. Przedstawienie problemu

Fig. 2. Overall program flow chart
Rys. 2. Ogólny schemat blokowy programu

Fig. 3. World transformation
Rys. 3. Przekształcenie świata

path Sref. Points from that path are used to calculate error 
signal for a PID controller. Finally, the control data is dispat-
ched to the controlled robot. Program runs with parameters 
presented in Table 1.

Table 1. World parameters
Tabela 1. Parametry świata

Symbol Description Value

Wsize Workspace size 2 m × 2 m

dr, do Robot and obstacle diameter 0.1 m

ts Program cycle time varying ≈ 0.1 s

nPgen
Number of cubic spline 

points 10

dSC

Minimal obstacle distance 
triggering State Changed 

event
0.01 m

The obstacles have the same diameter as the controlled robot. 
In order to ensure that the path is not too close to the obstac-
les, the boundaries of obstacles have been extended by two 
robot radii. This expanded region is called a critical area. Pro-
gram cycle time ts is varying because a nondeterministic opera-
ting system and wireless communication utilizing TCP protocol 
were used.

Preprocessing of the world data is used to speed up the calcu-
lation of the Particle Swarm Optimization algorithm. It trans-
forms the coordinate system from global (workspace) to local 
one (between robot and its destination point), with use of trans-
lation and rotation operations. That conversion allows to sim-
plify the complexity of optimization process by reducing the 
dimensionality of search space. Similar approach can be found 
in [10, 17].

2.2. Optimization Algorithm
The problem of robot path planning is treated as a minimiza-
tion problem and considered on the transformed search space 
limited by constraints. Each iteration of the PSO algorithm 

2.1. Solution Outline
The program workflow (Fig. 2) begins with the acquisition of 
the robot’s current position, its destination and positions of 
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generates a set of m points Pg1, Pg2, …, Pgm, where m is the 
number of obstacles present in the workspace. This set of 
points Pgen = {Pg1, Pg2, …, Pgm} is then interpolated by a cubic 
spline function. The interpolated path consists of nPgen points 
forming Sref set.

The fitness function to be minimized by the Particle Swarm 
Optimization algorithm consists of two parts. The first one eva-
luates the length of the path and the second part ensures the 
safety of the path, monitoring whether the obstacles are in an 
acceptable distance from the controlled robot.

The following set of equations describes the optimization 
algorithm. The fitness function f is given in the following form 
and minimized:

  (1)

 ( )0,min refSf  (2)

where: Sref – reference path points, O – obstacles positions, slen 
– total path length function, violfa – obstacle zone violation 
factor, viol – violation function.

As mentioned before the fitness function f is split in two 
parts: path length and zone violation. The former is defined 
as following:
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where: n = nPgen, dist – Euclidean distance function.
While the latter one (zone violation):

  

(4)

where: m – number of obstacles, n = nPgen. It can be obse-
rved that the behavior of zone violation function is similar to 
a repulsive potential field.

The set of transformed points Pgen is given as following:

  (5)

Each single value Pi of the set Pgen is subjected to constraints 
(Fig. 4). It must be placed in the search space sp and cannot 
lie within any of the obstacles’ boundaries Bndlow, Bndup. The 
search space sp equates to robot diameter plus half the distance 
between the robot and its destination.

The following set of parameters in Table 2 was used during 
simulation and real-world experiments. The meaning of these 
parameters is discussed in [18].

Table 2. PSO algorithm parameters
Tabela 2. Parametry algorytmu PSO

Symbol Description Value

nPSOiter Number of iterations 50

swsize Swarm size 20

velfa Search velocity factor 10%

veldamp Velocity damping factor 0.898

fslocal Local fitness significance factor 1.5

fsglobal Global fitness significance factor 1.5

violfa Obstacle zone violation factor 100

2.3. Comparison to Similar Solutions
As mentioned before, many researchers are concerned with 
the problem of path planning, and thus numerous solutions 
were developed. In this subsection a brief comparison with 
other approaches is provided in which the problem descrip-
tion is similar (albeit not identical) to the one presented in 
this paper. Two solutions based on PSO [15, 17] and one on 
Genetic Algorithm (GA) [10] are discussed in relation to the 
proposed method.

A brief summary of all the methods is given in Table 3; the 
discussion will be focused on differences between them and con-
sequences thereof. First, however, it is useful to establish the 
common factors shared by all of the presented solutions:

 − Workspace is two-dimensional,
 − Both dynamic and static obstacles may be present,
 − Underlying algorithms are heuristic in nature,
 − Generated paths are evaluated by a fitness function.
The accuracy in the spatial description of the environment 

affects the quality of obtained solutions. Less precise methods 
rely on encompassing workspace objects in primitive shapes, 
thus the area occupied by such element is artificially extended. 
Better, more aggressive paths (i.e. nearer the obstacle’s real 
boundary) may not be discovered with this approach. However, 
the more accurate environment description comes at the expense 
of computational complexity.

When the environment is populated by well-defined classes 
of objects (i.e. their shape is known) it is unnecessary to strive 
for a more complex description. This approach, adopted in the 
proposed method, is also present in [10] and [17]. Several shape 
classes are recognized in the latter solution. While polygons are 
considered in [15], they are ultimately encompassed in rectan-
gular areas.

Additionally, an algorithm may also be supplied with dynamic 
obstacles’ kinematics. While the spatial description describes 
only the current configuration space, kinematics offers a mean 
to predict the outcome of future time frames. This prediction 
allows the path generator to plan accordingly and thus results 
in safer paths overall. Some rudimentary kinematics information 
may also be inferred by comparing successive time frames. This 
would require the algorithm to memorize previous environment 
states and track the behavior of all objects. Additional informa-
tion about the dynamic obstacles’ kinematics is exploited in [15, 
17]. Intersections of the controlled robot’s and obstacles’ paths 

Fig. 4. Search space boundaries
Rys. 4. Ograniczenia przestrzeni poszukiwań rozwiązania
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are considered as points of potential collision and the algorithm 
checks whether one occurs in the future, if so, an alternative 
path is sought.

If the algorithm does not employ any mechanism to utilize the 
objects’ kinematics, then the dynamic obstacles are treated as if 
they were static. Each time frame is treated independently from 
the other and path must be recalculated. This is the approach 
presented both in [10] and the proposed method.

In several of the solutions a workspace transformation is 
applied in order to further reduce the computational complexity; 
two-dimensional search space is converted to a single dimen-
sion. One of the algorithms’ discerning features is the method 
for choosing points where the transformation is conducted. In 
the presented method, a nonuniform distribution is used, the 
selected points are tied to the obstacles’ positions and number. 
This is contrary to other solutions in which a uniform distribu-
tion is utilized and the number of points is one of the algorith-
m’s parameters.

Another important distinction is the definition of the path 
evaluation function. While all the solutions agree upon the mini-
mization of the path length as one of the criteria, there are nota-
ble differences how other factors are evaluated, if at all. Method 

[15] is the only one that does not take into account the distance 
to the obstacles (path safety criterion); instead, any solution 
with a collision is simply discarded. Also, information about the 
obstacles’ kinematics may be used to optimize the path in terms 
of time, and not only length. In [17] the path safety criterion is 
included in the evaluation function; however, its binary nature 
leads to the same behavior as in [15].

Beside the length, the Genetic Algorithm [10] optimization 
procedure takes into account the path’s linearity – with the goal 
of minimizing the curvature. This further reinforces the smo-
othing effect, potentially elongating the path itself. The costs 
of violating the safe distance from each obstacle are aggregated 
and constitute the path safety criterion. Complete evaluation 
function is a sum of these three components.

In the proposed solution, a similar approach to the GA algo-
rithm was taken in terms of path safety criterion. One major 
difference being that the obstacle distance penalization function 
is normalized and its value is scaled with the path’s length. This 
ensures the correlation between the optimization parameters 
and results in only one user-defined parameter – the safety zone 
violation coefficient.

Table 3. Solutions comparison
Tabela 3. Porównanie rozwiązań

Solution Algorithm Environment Workspace 
Transformation

Fitness Function 
Objectives Path Smoothness

Proposed PSO
2D workspace with circular static and 

dynamic obstacles, no information about 
kinematics of dynamic obstacles

yes (1D)
varied spacing

path length 
distance to obstacles cubic splines

[10] GA
2D workspace with circular static and 

dynamic obstacles, no information about 
kinematics of dynamic obstacles

yes (1D)
equal spacing

path length
distance to obstacles

smoothing

angle deviation min-
imization, smoothing 

operator

[15] PSO
2D workspace with rectangle-enclosed static 

and dynamic obstacles, kinematics of dynamic 
obstacles is known

no path length
travel time no

[17] PSO
2D workspace with varied static and dynamic 
obstacles, kinematics of dynamic obstacles is 

known

yes (1D)
equal spacing

path length
distance to obstacles parabolic function

Fig. 5. Optimization result for scenario a)
Rys. 5. Wynik optymalizacji dla scenariusza a)

Fig. 6. Optimization process for scenario a)
Rys. 6. Proces optymalizacji dla scenariusza a)
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In most of the solutions, methods for smoothing the generated 
paths were applied in order to improve the paths’ traversability. 
Authors of [17] employed a parabolic function calculated with 
the use of optimized path’s points as well as obstacles’ positions 
and velocities. This approach assumes that the velocity of dyna-
mic obstacles is constant.

The algorithm presented in [10] utilizes two methods of path 
smoothing: one as an optimization criterion and the other as 
a genetic operator. The latter operates on the principle of repla-
cing a curve node by additional three points. In the proposed 
solution, cubic spline functions were used which, in contrast to 
ordinary polynomials, avoid the problem of oscillations.

3. Simulation

This section presents results of simulation experiments con-
ducted to validate the feasibility of the proposed method. The 
controlled robot is stationary and the path is only generated 
for its initial points. The following scenarios were tested:
a) one static obstacle,
b) three static obstacles,
c) one static and two dynamic obstacles.

The optimization result figures in this section depict the gene-
rated reference path between the starting and destination points. 
In addition a set of Pgen points used in interpolation method is 
shown. The areas occupied physically by the robot and obstacles 
are marked as well as the obstacles’ critical areas. X and Y axes 
represent the 2D workspace. Current optimization iteration, fit-
ness function value and reference path length are all presented 
in a figure’s label.

An optimization process figure presents the fitness function 
values’ evolution in subsequent iterations of the PSO algorithm. 
For every iteration, fitness of each particle is shown and the best 
solution is highlighted. In addition, fitness value and reference 
path length of first and last iteration are annotated.

It can be seen that with the rising number of obstacles 
(Fig. 7) optimization problem becomes more complex and not 
all particles converge to the best solution (Fig. 8). Still, the 
generated path is smooth and realizable. The problem is solved 
around 10th iteration of the PSO algorithm with an acceptable 
fitness value.

Last set of optimization results (Fig. 9) depicts a scenario with 
two moving obstacles. The velocity value for each one is anno-

Fig. 7. Optimization result for scenario b)
Rys. 7. Wynik optymalizacji dla scenariusza b)

Fig. 8. Optimization process for scenario b)
Rys. 8. Proces optymalizacji dla scenariusza b)
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tated. Also paths of these obstacles with their corresponding 
starting points and destinations are presented. Current program 
iteration, time and reference path length are shown in the label.

While the stationary nature of the controlled robot remains 
the same, the algorithm must deal with a dynamic workspace. 
The presence of the two moving obstacles enforces the algorithm 
to reevaluate the planned path as changes in the environment 
state are detected. The PSO itself is not concerned with the 
kinematics of the obstacles, it treats each environmental setup 
as one with all obstacles static.

With the evolution of the environment (i.e. the obstacles are 
moving) the generated path also changes (Fig. 9). It can be seen 
that the more straightforward solution achieved at the end of 
the simulation is earlier denied by the dynamic obstacles’ critical 
areas. While this leads to different path lengths, the curves of 
proposed solutions are relatively smooth and should be achie-
vable by a real robot.

4. Real-World Experiment

In a real-world experiment, a mobile robot navigates in a dyna-
mic environment. The information about the mobile robot and 
obstacles in the workspace is provided by the visual feedback. 
A detailed description of the laboratory stand used to test the 
presented algorithm can be found in [19].

4.1. Control Strategy
Calculation of setpoint values for control algorithm is based 
on the idea of following a virtual robot (Fig. 10) [20]. The 
virtual robot’s center point is responsible for obtaining the 
velocity and orientation of the controlled robot; it is determi-
ned by the position of the controlled robot in relation to the 
reference path.

Fig. 9. Optimization result for scenario c)
Rys. 9. Wynik optymalizacji dla scenariusza c)
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The algorithm searches for the nearest point on the reference 
path which has not yet been reached by the controlled robot and 
calculates the angle between the controlled robot and that point. 
Second part of the algorithm determines the velocity which is in 
turn converted to the distance between the controlled robot and 
the virtual one. This velocity depends on the algorithm settings, 
remaining path distance and takes into account braking distance.

In order to perform the path following, a proportional-inte-
gral-derivative (PID) controller is implemented in a broader con-
trol structure with parameters given in Table 4. The controller 
equation is defined as follows:

 
( ) ( ) ( ) ( )[ ] ( ) ( )[ ]

( )∑
= −

−−+−⋅⋅+⋅=
k

i s
s kt

kekeDitieIkePky
0 1

11  (6)

where: ts – varying program cycle time. In fact, after experi-
menting with the parameters, a simpler P controller was found 
to be sufficient.

Table 4. Control system parameters
Tabela 4. Parametry układu sterowania

Symbol Description Value

vset Robot nominal velocity 0.3 m/s

aacc 
adec

Robot acceleration and deceleration 0.15 m/s2

dppoint
Minimal distance to the current path 
point to trigger next point selection 0.05 m

Pdist
Proportional factor of distance con-

troller 2

Idist 
Ddist

Integral and derivative factors of 
distance controller 0

SOdist Switch on level of distance controller 0.01 m

Pang Proportional factor of angle controller 0.75

Iang 
Dang

Integral and derivative factors of 
angle controller 0

SOang Switch on level of angle controller 10°

4.2. Results
A set of real-world experiments with different environmental 
setups was performed to verify the effectiveness of the pro-
posed algorithm. In contrast to the simulation section, the 
robot actually traversed the generated path. Newly generated 
paths in next iterations of the algorithm use robot’s obse-
rved position as their starting point. The following scenarios 
were tested:

a) three static obstacles,
b) two static and one dynamic obstacles.
In the real-world experiment optimization figures the control-

led robot’s actual movement path is shown to visualize the fol-
lowing of the reference path. Maximum and mean error values 
are presented in a figure’s label.

It can be seen that the most problematic task for the control-
led robot is driving over curves. The large overshoot in actual 
path traversed by the robot (Fig. 11) can be attributed to manu-
ally selected PID controller parameters. Despite this, the error 
is within an acceptable range.

Fig. 10. Concept of following the virtual robot
Rys. 10. Idea podążania za robotem wirtualnym

Fig. 11. Optimization result for scenario a)
Rys. 11. Wynik optymalizacji dla scenariusza a)

In second scenario (Fig. 12) the dynamic case is presented. 
Controlled robot velocity is annotated and path driven from 
starting position to destination is shown.

This result illustrates a real-world path adaptation to 
a moving obstacle. Similar to the simulation results, the gene-
rated reference paths are smooth and collision-free. The control-
led robot was able to follow them easily while avoiding collision 
with any of the obstacles.

An interesting situation arose between the first two snapshots 
of the robot movement (t = 0 s and t = 1.975 s). It is obvious 
that the initial path was ultimately ignored in later iterations 
(t = 1.975 s), even though the dynamic obstacle was not in 
a position to distort it. This can be attributed to errors caused 
by the practical nature of the experiment, e.g., robot dynamics, 
vision system inaccuracies. However the fitness values of these 
two paths must be very similar as they are mostly symmetrical.

Another interesting feature of the presented approach is visi-
ble in the last snapshot. A straight line unobstructed by any 
obstacle is found between the robot’s actual position and the 
destination point. In this case the presented algorithm chooses 
it immediately ignoring the cubic spline interpolation.
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Fig. 12. Optimization result for scenario b)
Rys. 12. Wynik optymalizacji dla scenariusza b)
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5. Conclusions

Overall, the implemented Particle Swam Optimization algo-
rithm was successful at generating paths in an environment 
with static and dynamic obstacles. Simulation results show 
that the proposed method is feasible and real-world experi-
ment confirms its efficiency; the generated paths are smooth 
and achievable by the robot. The results prove that the pre-
sented PSO-based algorithm is applicable to the field of mobile 
robotics for obtaining reasonable collision-free paths in a two-
-dimensional environment.
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Streszczenie: W artykule przedstawiono algorytm rojowy z ograniczeniami realizujący planowanie 
bezkolizyjnej ścieżki ruchu robota mobilnego. Problem optymalizacyjny został przeanalizowany dla 
środowiska statycznego i dynamicznego. Do stworzenia gładkiej ścieżki ruchu wykorzystano interpolację 
rozwiązania optymalizacji przy użyciu sześciennych funkcji sklejanych. Funkcja kosztu uwzględnia 
długość ścieżki ruchu oraz penalizację za naruszenie przestrzeni przeszkód. Wprowadzono transformację 
świata w celu redukcji złożoności obliczeniowej algorytmu optymalizacji. Przeprowadzono zróżnicowane 
scenariusze badawcze testujące algorytm w eksperymentach symulacyjnych i rzeczywistych. 
W przypadku tych ostatnich wykorzystano ideę podążania za wirtualnym robotem. Zaprezentowano 
wyniki obrazujące wygenerowaną ścieżkę ruchu oraz ocenę jej realizacji przez robota mobilnego. 

Słowa kluczowe: robot mobilny, planowanie ścieżki ruchu, unikanie przeszkód, algorytm rojowy, dynamiczne środowisko
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