PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On nonlocal second order perturbed pseudo integro-differential evolution equations with infinite state-dependent delay

Identyfikatory
Warianty tytułu
PL
O nielokalnych równaniach ewolucyjnych drugiego rzedu z zaburzeniami o pseudocałkowo-różniczkowym charakterze oraz nieskończonym opóznieniu zależnym od stanu
Języki publikacji
EN
Abstrakty
EN
Celem tej pracy jest zbadanie istnienia „miękkich” rozwiązań zaburzonych równań pseudointegroróżniczkowych ewolucji cząstkowej i neutralnej drugiego rzędu z nieskończonym opóźnieniem zależnym od stanu. Autorzy wykorzystuja nieliniową alternatywę Avramescu (v. Avramescu (2003)) dla sumy operatorów zwartych i kontrakcji w przestrzeniach Frécheta w połączeniu z teorią półgrup.
Rocznik
Strony
271--298
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Djillali Liabes University of Sidi Bel-Abbes P. Box 89, Mathematics Laboratory Djillali Liabes University of Sidi Bel-Abbes, Algeria
  • Djillali Liabes University of Sidi Bel-Abbes P. Box 89, Mathematics Laboratory Djillali Liabes University of Sidi Bel-Abbes, Algeria
Bibliografia
  • [1] N. Ahmed. Semigroup theory with applications to systems and control. Longman Scientific, New York, 1991.
  • [2] E. H. andez and M. A. McKibben. Some comments on: Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations. Comput. Math. Appl., 50 (5-6):655-669, 2005.
  • [3] D. Aoued and S. Baghli-Bendimerad. Mild solutions for perturbed evolution equations with infinite state-dependent delay. Electron. J. Qual. Theory Differ. Equ., 59:1-24, 2013.
  • [4] D. Aoued and S. Baghli-Bendimerad. Controllability of mild solutions for evolution equations with infinite state-dependent delay. Eur. J. Pure Appl. Math., pages 383-401, 2016.
  • [5] C. Avramescu. Some remarks on a fixed point theorem of Krasnoselskii. Electron. J. Qual. Theory Differ. Equat., 5:1-15, 2003.
  • [6] S. Baghli and M. Benchohra. Perturbed functional and neutral functional evolution equations with infinite delay in fréchet spaces. Electron. J. Differential Equations, 69:1-19, 2008.
  • [7] S. Baghli-Bendimerad. Global mild solution for functional evolution inclusions with state-dependent delay. J. Adv. Res. Dynam. Control Syst., 5:1-19, 2013.
  • [8] S. Baghli-Bendimerad, M. Benchohra, and J. J. Nieto. Global uniqueness results for partial functional and neutral functional evolution equations with state-dependent delay. J. Adv. Res. Differ. Equ., 2(3):35-52, 2010.
  • [9] J. Bélair. Population models with state-dependent delays. Notes Pure Appl. Math., 131:165-176, 1990.
  • [10] M. Benchohra and I. Medjadj. Global existence results for second order neutral functional differential equation with state-dependent delay. Comment. Math. Univ. Carolin, 57(2):169-183, 2016.
  • [11] C. Boudefla and S. Baghli-Bendimerad. Nonlocal controllability of mild solutions for evolution equations with state-dependent delay in fréchet spaces. J. Appl. Math., 37(1):53-71, 2024.
  • [12] C. Boudefla and S. Baghli-Bendimerad. Nonlocal controllability of mild solutions for neutral evolution equations with state-dependent delay in fréchet spaces. Arch. Control Sci., 34(1):117-148, 2024.
  • [13] L. Byszewski. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl., 162:494-505, 1991.
  • [14] L. Byszewski. Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., 18:109-112, 1993.
  • [15] L. Byszewski. On a mild solution of a semilinear functional-differential evolution nonlocal problem. Selected problems of mathematics, 6:25-33, 1995.
  • [16] L. Byszewski and H. Akca. On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stochastic Anal., 10:265-271, 1997.
  • [17] F. S. C. Boudefla and S. Baghli-Bendimerad. Controllability of mild solutions for second-order neutral evolution equations with state-dependent delay. Complex Anal. Oper. Theory, 18(80):1-24, 2024. [18] R. D. Driver and M. J. Norris. Note on uniqueness for a one-dimensional two-body problem of classical electrodynamics. Ann. Phys., 42:347-351, 1967.
  • [19] R. S. E. Hernández and S. T. Aki. Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differential Equations, 28:1-11, 2008.
  • [20] K. B. G. Arthi. Controllability of second-order impulsive evolution systems with infinite delay. Nonlinear Anal. Hybrid Syst, 11:139-153, 2014.
  • [21] J. Hale and J. Kato. Phase space for retarded equations with infinite delay. Funkcial. Ekvac., 21:11-41, 1978.
  • [22] E. Hernández. A remark on second order differential equations with nonlocal conditions. Cadernos de Matemática, 4(SMA#177):299-309, 2003.
  • [23] D. G. P. K. Balachandran and S. M. Anthoni. Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations. Comput. Math. Appl., 46(8):1313-1324, 2003.
  • [24] M. Kozak. A fundamental solution of a second-order differential equation in a Banach space. Univ. Iagel. Acta Math., 32:275-289, 1995.
  • [25] M. C. Mackey and J. Milton. Feedback delays and the origin of blood cell dynamics. Comm. Theor. Biol., 1:299-327, 1990.
  • [26] A. Mebarki and S. Baghli-Bendimerad. Neutral multi-valued integro-differential evolution equations with infinite state-dependent delay. Turkish J. Math., 44(6):2312-2329, 2020.
  • [27] S. K. Ntouyas and P. C. Tsamatos. Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl., 210: 679-687, 1997.
  • [28] S. K. Ntouyas and P. C. Tsamatos. Global existence for semilinear evolution integrodifferential equations with delay and nonlocal conditions. Appl. Anal., 64:99-105, 1997.
  • [29] A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983.
  • [30] D. R. Willé and C. T. H. Baker. Stepsize control and continuity consistency for state-dependent delay-differential equations. Comput. Appl. Math., 53(2):163-170, 1994.
  • [31] S. M. Y. Hino and T. Naito. Functional differential equations with infinite delay, volume 1473. Springer-Verlag, Berlin, 1991.
  • [32] K. Yosida. Functional Analysis. Springer-Verlag, Berlin, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4f17cfa-6d20-4d70-86b3-0b5be61cafc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.