PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High performance of multilevel inverter reduced switches for a photovoltaic system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zwiększenie wydajności wielopoziomowych przełączników falownika do systemu fotowoltaicznego
Języki publikacji
EN
Abstrakty
EN
In this paper, optimum switching angles are chosen from slime moiled algorithm (SMA), Artificial Bee Colony (ABC), Genetic algorithms (GA), Whale optimization algorithm (WOA), and Gray wolf algorithm (GWO). These angles are selected according to the lowest total harmonic distortion of output load voltage from reduced switches multilevel inverter. These algorithms are working together in a hybrid seduced to solve the nonlinear equation of switching angles determination. A 25-level inverter fed by isolated unequal PV panel as DC sources with reduced switches and sources is chosen for this study. Theoretical analysis and Simulation are accomplished using Matlab/Simulink for 25 level reduced switches multilevel inverter. The simulated results validated the practical outcomes.
PL
W niniejszym artykule optymalne kąty przełączania zostały wybrane spośród algorytmu śluzowatego (SMA), sztucznej kolonii pszczół (ABC), algorytmów genetycznych (GA), algorytmu optymalizacji wielorybów (WOA) i algorytmu szarego wilka (GWO). Kąty te są dobierane zgodnie z najniższymi całkowitymi zniekształceniami harmonicznymi napięcia obciążenia wyjściowego ze zredukowanych przełączników wielopoziomowych falowników. Algorytmy te współpracują ze sobą w hybrydzie, której celem jest rozwiązanie nieliniowego równania wyznaczania kątów przełączania. Do tego badania wybrano 25-poziomowy falownik zasilany przez izolowany nierówny panel fotowoltaiczny jako źródła prądu stałego o zredukowanych przełącznikach i źródłach. Analiza teoretyczna i symulacja są realizowane przy użyciu Matlab/Simulink dla 25 przełączników o zredukowanych poziomach wielopoziomowego falownika. Symulowane wyniki potwierdziły praktyczne wyniki.
Rocznik
Strony
14--18
Opis fizyczny
Bibliogr.32 poz., rys., tab.
Twórcy
  • Northern Technical University, Engineering Technical College of Mosul, Mosul, Iraq
  • Northern Technical University, Engineering Technical College of Mosul, Mosul, Iraq
  • Northern Technical University, Engineering Technical College of Mosul, Mosul, Iraq
Bibliografia
  • [1] Leon Freris, David Infield (2008),’’ Renewable Energy in Power Systems’’. WILEY, pp 240.
  • [2] Mohammed Shihab Ibne Tarek, Asad Siam, Muhammad Zia, Md. Mizanur Rahman (2018),” A Novel Five-Level Inverter Topology with Reactive Power Control for Grid-Connected PV System”. IEEE, pp. 101-105.
  • [3] S. Kouro et al., "Recent Advances and Industrial Applications of Multilevel Converters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
  • [4] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt and S. Kouro, "Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives," in IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 2930-2945, Dec. 2007.
  • [5] S. Du, B. Wu and N. Zargari, "Delta-Channel Modular Multilevel Converter for a Variable-Speed Motor Drive Application," IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6131-6139, Aug. 2018.
  • [6] C.M.N. Mukundan, K. Mithun and P. Jayaprakash, "Modular fivelevel inverter with binary sources based DVR for power quality improvement," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, 2017, pp. 1-6.
  • [7] A. Kavousi, B. Vahidi, R. Salehi, M.K. Bakhshizadeh, N. Farokhnia, and S. H. Fathi, “Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1689–1696, 2012, doi: 10.1109/TPEL.2011.2166124.
  • [8] M A. Memon, S. Mekhilef, and M. Mubin, “Selective harmonicelimination in multilevel inverter using hybrid APSO algorithm,” IET Power Electron., vol. 11, no. 10, pp. 1673–1680, 2018, doi: 10.1049/iet-pel.2017.0486.
  • [9] S.D. Patil and S. . Kadwane, “Hybrid optimization algorithm applied for selective harmonic elimination in multilevel inverter with reduced switch topology”, Microsyst. Technol., vol. 24, no. 8, pp. 3409–3415, 2018, doi: 10.1007/s00542-018-3720-x.
  • [10] L. Manai, F. Armi, and M. Besbes, “Performance comparison between optimization algorithms for asymmetrical cascaded multilevel inverter control,” Automatika, vol. 61, no. 4, pp. 626–642, 2020, doi: 10.1080/00051144.2020.1810505.
  • [11] I.A. Adeyemo, J. Ojo, and O. Adegbola, “Performance Evaluation of Three Evolutionary Algorithms for Selective Harmonic Elimination in Voltage Source Multilevel,” vol. 3, no. November, pp. 25–42, 2015.
  • [12] I. Journal and O.F. Scientificengineering, “Real Coded Genetic Algorithm Approach to Harmonic Reduction in Multilevel Inverters for Drives,” no. SEPTEMBER, 2015.
  • [13] Javid Mohtasham (2015),” Review Article-Renewable Energie”, ELSEVIER PP 1289–1297.
  • [14] Jae-Sub Ko, Jun-Ho Huh, and Jong-Chan Kim (2020),"Overview of Maximum Power Point Tracking Methods for PV System in Micro Grid", Electronics, PP 1-22.
  • [15] Bidyadhar Subudhi, Raseswari Pradhan, R (2012),"A comparative study on maximum power point tracking techniques for photovoltaic power systems". IEEE, 4, PP 89–98.
  • [16] Po-Cheng Chen, Po-Yen Chen, Yi-Hua Liu, Jing-Hsiao Chen, Yi-Feng Luo(2015), "A comparative study on maximum power point tracking techniques for photovoltaic generation systems operating under fast-changing environments", ELSEVIER PP 261–276.
  • [17] Omar Diouri, Najia Es-Sbai, Fatima Errahimi, Ahmed Gaga, and Chakib Alaoui (2019),’’ Modeling and Design of Single-Phase PV Inverter with MPPT Algorithm Applied to the Boost Converter Using Back-Stepping Control in Standalone Mode’’, International Journal of Photoenergy, PP 1-16.
  • [18] Takuro Sato, Daniel M. Kammen, Bin Duan, Martin Macuha, Zhenyu Zhou, Jun Wu, Muhammad Tariq, Solomon Abebe Asfaw (2015), ‘’SMART GRID STANDARDS SPECIFICATIONS, REQUIREMENTS, AND TECHNOLOGIES’’, WILEY, PP 43.
  • [19] Ahmed M.T. Ibraheem AL-Naib,( 2016) ,"Modeling and Simulation of Solar Photovoltaic Array using MATLAB/Simulink", AL-Taqani Journal, Vol. 29, No. 1, PP. 55-65.
  • [20] V. Jammala, S. Yellasiri and A. K. Panda, "Development of a New Hybrid Multilevel Inverter Using Modified Carrier SPWM Switching Strategy," in IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8192-8197, Oct. 2018.
  • [21] S. Foti et al., "An Optimal Current Control Strategy for Asymmetrical Hybrid Multilevel Inverters," in IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4425-4436, Sept.-Oct. 2018.
  • [22] M.H. Rashid, “Power electronics circuits, Devices and applications”, 3rd Edition 2004, Pearson prentice Hall, pp.862.
  • [23] Rodríguez J, Lai J, Peng FZ. Multilevel inverters?: A survey of topologies. IEEE Trans Ind Electron Control Appl 2002;49(4):724–38.
  • [24] Malinowski M, Gopakumar K, Rodriguez J, Perez MA. A survey on cascaded multilevel inverters. IEEE Trans Ind Electron 2010; 57(7): 2197–206.
  • [25] Wu B. High-power converters and AC drives. New York: Wiley IEEE; 2006.
  • [26] M.D. Siddique, S. Mekhilef, N.M. Shah, A. Sarwar, A. Iqbal, and M.A. Memon, “A New Multilevel Inverter Topology with Reduce Switch Count,” IEEE Access, vol. 7, pp. 58584–58594, 2019, doi: 10.1109/ACCESS.2019.2914430.
  • [27] H. Someya and M. Yamamura, “A Genetic Algorithm for Function Optimization,” IEEJ Trans. Electron. Inf. Syst., vol. 122, no. 3, pp. 363–373, 2002, doi: 10.1541/ieejeiss1987.122.3_363.
  • [28] S. Li, H. Chen, M. Wang, A.A. Heidari, and S. Mirjalili, “Slime mould algorithm: A new method for stochastic optimization,” Futur. Gener. Comput. Syst., vol. 111, pp. 300–323, 2020, doi: 10.1016/j.future.2020.03.055.
  • [29] A.M. Lippert and R.D. Reitz, “Modeling of multicomponent fuels using continuous distributions with application to droplet evaporation and sprays,” SAE Tech. Pap., vol. 69, pp. 46–61, 1997, doi: 10.4271/972882.
  • [30] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.
  • [31] S. Sharma, R. Kapoor, and S. Dhiman, “A Novel Hybrid Metaheuristic Based on Augmented Grey Wolf Optimizer and Cuckoo Search for Global Optimization,” ICSCCC 2021 - Int. Conf. Secur. Cyber Comput. Commun., pp. 376–381, 2021, doi: 10.1109/ICSCCC51823.2021.9478142.
  • [32] K. Bhokray, “Artificial Bee Colony Optimization,” no. October, 2016, doi: 10.13140/RG.2.2.22854.06720.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4ea55ef-ad27-4cda-a7a4-daeed0ce644e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.