Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work investigates the effect of Reynolds number, nanoparticle volume ratio, nanoparticle size and entrance temperature on the rate of entropy generation in Al2O3 /H2O nanofluid flowing through a pipe in the turbulent regime. The Reynolds average Navier-Stokes and energy equations were solved using the standard k-ε turbulent model and the central composite method was used for the design of experiment. Based on the number of variables and levels, the condition of 30 runs was defined and 30 simulations were run. The result of the regression model obtained showed that all the input variables and some interaction between the variables are statistically significant to the entropy production. Furthermore, the sensitivity analysis result shows that the Reynolds number, the nanoparticle volume ratio and the entrance temperature have negative sensitivity while the nanoparticle size has positive sensitivity.
Czasopismo
Rocznik
Tom
Strony
119--146
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr., wz.
Twórcy
autor
- Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
autor
- Department of Mathematics, Obafemi Awolowo University, Ile-Ife Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
autor
- Department of Electrical/Electronic and Computer Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
autor
- Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
Bibliografia
- [1] Yousefi S.A., Sharifpur M., Meyer J.P.: The effects of uncertainly of nanolayer properties on the heat transfer through nanofluids. In Proc. 10th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2014), Orlando, July 14–16, 2014.
- [2] Eapen J. Rusconi R., Piazz R., Yip S.: The classical nature of thermal conduction in nanofluids. J. Heat Transf. 132(2010), 10, 102402.
- [3] Choi S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Non-Newtonian Flows (D.A. Siginer, H.P. Wang, Eds.). ASME FED-Vol.2 31/MD-Vol. 66, New York 1995, 99–105.
- [4] Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(2001), 6, 718–720.
- [5] Wang X.Q., Mujumdar A.S.: Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 46(2007), 1, 1–19.
- [6] Sharma K.V., Sundar L.S., Sarma P.K.: Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int. Commun. Heat Mass 36(2009), 5, 503–507.
- [7] Li Q., Xuan Y.: Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China E: Technol. Sci. 45(2002), 4, 408–416.
- [8] Saha G., Paul M.C.: Numerical analysis of the heat transfer behaviour of waterbased Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int. Commun. Heat Mass 56(2014), 96–108.
- [9] Li P., Xie Y., Zhang D., Xie G.: Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices. Entropy 18(2016), 4, 134.
- [10] Rashidi S., Bovand M., Esfahani J.A.: Sensitivity analysis for entropy generation in porous solar heat exchangers by RSM. J. Thermophys. Heat Tr. 31(2016), 2, 390-402.
- [11] Konchada P.K., Vinay P.V., Bhemuni V.: Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach. Arch. Thermodyn. 37(2016), 3, 3–22.
- [12] Mah W.H.: Hung Y.M., Guo N.: Entropy generation of viscous dissipative nanofluid flow in microchannels. Int. J. Heat Mass Tran. 55(2012), 15-16, 4169– 4182.
- [13] Hajialigol N., Fattahi A., Ahmadi M.H., Qomi M.E., Kakoli E.: MHD mixed convection and entropy generation in a 3-D microchannel using Al2O3–water nanofluid. J. Taiwan Inst. Chem. Eng. 46(2015), 30–42.
- [14] Amirahmadi S., Rashidi S., Esfahani J.A.: Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners. Appl. Therm. Eng. 107(2016), 533–543.
- [15] Bianco V., Nardini S., Manca O.: Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes. Nanoscale Res. Lett. 6(2011), 1, 252.
- [16] Behera T.R.: Computational Study on Entropy Generation Minimization of Pipe Bending. Phd thessis, National Institute of Technology Rourkela, Rourkela 2015.
- [17] Shanbedi M., Zeinali H.S., Maskooki A., Eshghi H.: Statistical analysis of laminar convective heat transfer of MWCNT-deionized water nanofluid using the response surface methodology. Num. Heat Transfer A-Appl. 68(2015), 4, 454–469.
- [18] Shirvan K.M., Mamourian M., Mirzakhanlari S., Ellahi R.: Two-phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J. Mol. Liq.220 (2016), 888–901.
- [19] Chan J.S., Ghadimi A., Simon H., Metselaar C., Lotfizadehdehkordi B.: Optimization of temperature and velocity on heat transfer enhancement of nonaqueous alumina nanofluid. J. Eng. Sci. Technology 10(2015), 85–101.
- [20] Darbari B., Rashidi S., Abolfazli Esfahani J.: Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy 18(2016), 2, 52.
- [21] Esfandiary M., Habibzadeh A., Sayehvand H.: Numerical study of single phase/two-phase models for nanofluid forced convection and pressure drop in a turbulence pipe flow. Transp. Phenom. Nano Micro Scales 4(2016), 1, 11–18.
- [22] Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Meth. Appl. M. 3(1974), 2, 269–289.
- [23] Kays W.M., Crawford M., Weigang B.:Convective Heat and Mass Transfer. Tata McGraw-Hill Education, 2012
- [24] Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer Int. J. 11(1998)2, 151–170.
- [25] Xuan Y., Roetzel W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Trans.43(2000), 19, 3701–3707.
- [26] Corcione M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energ. Convers. Manage.52(2011), 1, 789–793.
- [27] Saha G.: Heat Transfer Performance Investigation of Nanofluids Flow in a Pipe. Phd thesis, University of Glasgow, Glasgow 2016.
- [28] Yunus A.C., Cimbala J.M.: Fluid Mechanics: Fundamentals and Applications. McGraw Hill Publ. 2006.
- [29] Ratts E.B., Raut A.G.: Entropy generation minimization of fully developed internal flow with constant heat flux. J. Heat Transfer 126(2004), 4, 656–659.
- [30] Khuri A.I., Mukhopadhyay S.: Response surface methodology. WIREs Comp. Stat. 2(2010), 2, 128–149.
- [31] Bathe K.J.: ‘ADINA theory and modeling guide.’ Volume I: ADINA Solids and Structures. ADINA R&D, Watertown, MA 2012.
- [32] Fadodun O.G., Amosun A.A., Salau O.A., Ogundeji J.A., Olaloye D.O.: Numerical investigation of thermal performance of single-walled carbon nanotube nanofluid under turbulent flow conditions. Engineering Reports 1(2019), 1, doi.org/10.1002/eng2.12024.
- [33] Fadodun O.G., Amosun A.A., Okoli N.L., Olaloye D. O., Ogundeji J.A., Durodola S.S.: Numerical investigation of entropy production in SWCNT/H2O nanofluid flowing through inwardly corrugated tube in turbulent flow regime. J. Therm. Anal. Calorim. 4(2020), 1–16.
- [34] Fadodun O.G., Amosun A.A., Salau A.O., Olaloye D. O., Ogundeji J.A., Ibitoye F.I., Balogun F.A: Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 1, 3–30.
- [35] Carley K.M., Kamneva N.Y., Reminga J.: Response surface methodology. CASOS Techn. Rep. CMU-ISRI-04-136. Carnegie Mellon Univ., Pittsburgh 2004.
- [36] Fadodun O.G., Amosun A.A., Ogundeji J.A., Olaloye D.O.: Numerical investigation of thermal efficiency and pumping power of Al2O3/H2O nanofluid in pipe using response surface methodology. J. Nanofluids 8(2019), 7, 1566–1576.
- [37] Version 7.0.0. Stat-Ease. Design Expert Inc., Minneapolis, 2005.
- [38] Gnielinski V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(1976), 1, 359–368.
- [39] Blasius H.: Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens 131(1913), 3, 1-41 (in German).
- [40] Shari K.: How to get Started with Design Expert Software. Stat-Ease Inc., 2013.
- [41] Mark A., Pat W.: Design of Experiment Simplified. Productivity Inc., 2003.
- [42] Richard B.: Design Expert 7. Introduction. Mathematics Learning Support Centre. 2007.
- [43] Campolongo F., Braddock R.: The use of graph theory in sensitivity analysis of model output: a second order screening method. Reliab. Eng. Syst. Saf. 64(1999), 1, 1–12.
- [44] Yau C.: R Tutorial with Bayesian statistics using Open-BUGS. Amazon.com Services LLC, 2013.
- [45] Griewank A., Walther A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd Edn. (Vol. 105). SIAM, Philadelphia 2008.
- [46] Fadodun O.G., Salau A.O., Amosun A.A., Ibitoye F.I.: Sensitivity analysis and evaluation of critical size of reactor using response surface methodology. IJET 10(2019), 4, 184–190.
- [47] Fadodun O.G., Amosun A.A., Okoli N.L., Olaloye D. O., Durodola S.S., Ogundeji J.A.: Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J. Therm. Anal. Calorim. 12(2019), 1–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4e1221b-5794-4bdd-80bd-9201d9e7d986