PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material dynamic behavior in cutting zone of Inconel 718 and its infuence on cutting process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nickel-based superalloy Inconel 718 is widely used in aerospace and other fields due to its excellent performance. However, the alloy elements are presented in the form of compounds with high hardness, such as TiC, NbC, MoC, TiN and so on, which lead to complex cutting deformation in machining Inconel 718. In this study, the cutting experiments and the fast tool-drop test were carried out to obtain the chip root. Combining the split Hopkins pressure bar (SHPB) test, a scanning electron microscope (SEM) was used to observe the metallographic micrographs of the specimens and analyzed the plastic dynamic behavior of the material in the cutting area. The soft and hardening mechanism in the dynamic deformation process was described. The stress distribution model of material in the cutting area was proposed and the influence of stress distribution on cutting deformation, side fow and tool wear during the cutting process were also given.
Rocznik
Strony
art. no. e146
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
  • Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), Harbin 150080, China
Bibliografia
  • 1. Cingara A, McQueen HJ. New formula for calculating fow curves from high temperature constitutive data for 300 austenitic steels. J Mater Process Tech. 1992;36:31-42. https://doi.org/10.1016/0924-0136(92)90236-L.
  • 2. Costes JP, Guillet Y, Poulachon G, Dessoly M. Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int J Mach Tool Manuf. 2007;7(7-8):1081-7. https://doi.org/10.1016/j.ijmachtools.2006.09.031.
  • 3. Dvaies MA, Chou Y, Evsna CJ. On chip morphology, tool wear and cutting mechanics in fnish hard turning. CIRP Ann Manuf Technol. 1996;45:77-82. https://doi.org/10.1016/S0007-8506(07) 63020-0.
  • 4. Dvaies MA, Buns TJ, Evnas CJ. On the dynamics of chip of formation in machining hard metals. CIRP Ann Manuf Technol. 1997;46:25-30. https://doi.org/10.1016/S0007-506(07)60768-9.
  • 5. Elbestawi MA, Srivastava AK, El-Wardany TI. A model for chip formation during machining of hardened steel. CIRP Ann. 1996;8:71-6. https://doi.org/10.1016/S0007-8506(07)63019-4.
  • 6. Gao D, Hao ZP, Han RD, et al. Study of cutting deformation in machining nickel-based alloy Inconel 718. Int J Mach Tools Manuf. 2011;51(6):520-7.
  • 7. Hao ZP, Cui RR, Fan YH. Formation mechanism and characterization of shear band in high-speed cutting Inconel718. Int J Adv Manuf Techol. 2018;98:2791-9.
  • 8. Jawahir IS, van Luttervlt CA. Recent developments in chip control research and applications. CIRP Ann Manuf Technol. 1993;42(2):659-93. https://doi.org/10.1016/S0007-8506(07)62531-1.
  • 9. Komnaduri R, Schroeder T. On hear instability in machining nickel-iron base superalloy. J Eng For Ind. 1986;108:93-100. https://doi.org/10.1115/1.3187056.
  • 10. Kouam J, Songmene V, Balazinski M, et al. Efects of Minimum Quantity Lubricating (MQL) conditions on machining of 7075-T6 aluminum alloy. Int J Adv Manuf Technol. 2015;79:1325-34. https://doi.org/10.1007/s00170-015-6940-6.
  • 11. Kp A, Ms B, Hm C, et al. Influence of workpiece texture and strain hardening on chip formation during machining of Ti-6Al-4V alloy. Int J Mach Tool Manuf. 2022;173:103849. https://doi. org/10.1016/j.ijmachtools.2021.103849.
  • 12. Liao YS, Shiue RH. Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear. 1996;193:16-24. https://doi.org/10.1016/0043-1648(95)06644-6.
  • 13. Lin YC, Li KK, Li HB, et al. New constitutive model for high-temperature deformation behavior of Inconel 718 superalloy. Mater Design. 2015;74:108-18. https://doi.org/10.1016/j.matdes.2015.03.001.
  • 14. Liu YC. Metal cutting principle. Shanghai: Shanghai Science and Technology Press; 1985. p. 19.
  • 15. Lu BJ, Peng J, Shi DW, Tang AT, Pan FS. Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2.0Zn-0.3Zr alloy based on true stress-strain curves. Mater Sci Eng A. 2013;560:727-33. https://doi.org/10.1016/j.msea.2012.10.025.
  • 16. Mahalle G, Kotkunde N, Gupta AK, et al. Microstructure characteristics and comparative analysis of constitutive models for flow stress prediction of inconel 718 alloy. J Mater Eng Perform. 2019;28:3320-31. https://doi.org/10.1007/s11665-019-04116-w.
  • 17. Obikawa T, Usui E. Computational machining of titanium alloy-fnite element modeling and a few results. J Manuf Sci Eng Transa ASME. 1996;118:208-15. https://doi.org/10.1115/1.2831013.
  • 18. Recht RF. Catastrophic thermoplastic shear. J Appl Mech Trans ASME. 1964;86:189-93. https://doi.org/10.1115/1.3629585.
  • 19. Recht RF. A dynamic analysis of high speed machining. J Eng For Ind. 1985;107:309-15. https://doi.org/10.1115/1.3186003.
  • 20. Su GS, Liu ZQ, Li L, Wang B. Infuences of chip serration on micro-topography of machined surface in high-speed cutting. Int J Mach Tool Manuf. 2015;89:202-7. https://doi.org/10.1016/j.ijmac htools.2014.10.012.
  • 21. Shaw MC, Vyas A. The mechanism of chip formation with hard turning steel. CIRP Ann. 1998;47:77-83. https://doi.org/10.1016/S0007-8506(07)62789-9.
  • 22. Sahraoui Z, Mehdi K, Jaber MB. Experimental study of the dynamic behavior of thin-walled tubular workpieces in turning cutting process. J Adv Manuf Syst. 2021;20(01):75-93. https://doi.org/10.1142/S0219686721500049.
  • 23. Socha GM, Madejski B, Malicki M. Study on deformation-induced damage evolution for inconel718 superalloy with the use of innovative single-specimen method. J Theor App Mech. 2016;54:1379-90. https://doi.org/10.15632/jtam-pl.54.4.1379.
  • 24. Sellars CM, Tegart WJ. The relationship between the resistance and the structural deformation in the hot. Mem Sci Rev Acta Metall Sin. 1966;64:731-46.
  • 25. Thomas A, El-Wahabi M, Cabrera JM, et al. High temperature deformation of Inconel 718. J Mater Process Tech. 2006;177:469-72. https://doi.org/10.1016/j.jmatprotec.2006.04.072.
  • 26. Wang B, Liu ZQ. Acoustic emission signal analysis during chip formation process in high speed machining of 7050-T7451 aluminum alloy and Inconel 718 superalloy. J Manuf Process. 2017;27:114-25. https://doi.org/10.1016/j.jmapro.2017.04.003.
  • 27. Zener C, Hollomon JH. Effect of strain rate upon plastic fow of steel. J App Phys. 1944;15:22-32. https://doi.org/10.1063/1.1707363.
  • 28. Zhou ZH. Metal cutting principle. Shanghai: Shanghai Science and Technology Press; 1993. p. 61.
  • 29. Zbek O, Saruhan H. The efect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J Mater Res Technol. 2020. https://doi.org/ 10.1016/j.jmrt.2020.01.010.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4e0fe73-390d-4718-80d2-3b33ff2dd744
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.