PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contribution to the production and use of biomass-derived solvents – a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this review key processes for the synthesis of greener or more sustainable solvents derived from renewable sources (saccharides, lignocellulose and triglycerides) are discussed. It is shown that a series of platform chemicals such as glycerol, levulinic acid and furans can be converted into a variety of solvents through catalytic transformations that include hydrolysis, esterification, reduction and etherification reactions. It was also considered several aspects of each class of solvent regarding performance within the context of the reactions or extractions for which it is employed.
Twórcy
  • Research Center in Applied Chemistry, CEPESQ –Department of Chemistry Federal University of Paraná –UFPR P. O. Box 1908, Curitiba, PR, 81531-980, Brazil
  • Research Center in Applied Chemistry, CEPESQ –Department of Chemistry Federal University of Paraná –UFPR P. O. Box 1908, Curitiba, PR, 81531-980, Brazil
  • Department of Chemistry, State University of Ponta Grossa –UEPGPonta Grossa, PR, 84030-900, Brazil
  • Unidade de Bioenergia e Biorrefinerias, Laboratório Nacional de Energia e Geologia, I.P.Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
Bibliografia
  • [1] Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz J, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chemical Reviews115 (2014), 6811–6853.
  • [2] Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W.Selective and flexible transformation of biomass-derived Platform chemicals by a multifunctional catalytic system. Angewandte Chemie122 (2010), 5642–5646.
  • [3] Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chemistry12 (2010), 1493–1513.
  • [4] Climent MJ, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry16(2013), 516–547.
  • [5] Werpy T,Peterson G. Top Value Added Chemicals from Biomass Volume I —Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume I : Results of Screening for Potential Candidates. (2004), http://www.osti.gov/bridge%0AAvailable.
  • [6] Bozell JJ,Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates —the US Department of Energy’s “Top 10” revisited. Green Chemistry Critical Reviews12 (2010), 539–554.
  • [7] Aycock DF. Solvent Applications of 2-Methyltetrahydrofuran in organometallic and biphasic reactions. Organic Process & Development11 (2007), 156–159.
  • [8] Hooshmand SE, Heidari B, Sedghi R, Varma RS. Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chemistry21 (2018), 381–405.
  • [9] Jin S, Byrne F, Mcelroy CR, Sherwood J, Clark JH, Hunt AJ. Challenges in the development of bio-based solvents: a case study on methyl (2,2-dimethyl-1,3-dioxolan-4-yl) methyl carbonate as an alternative aprotic solvent. Faraday Discussions(2017),1-8.
  • [10] Clarke CJ, Tu W, Levers O, Bro A, HallettJP. Green and sustainable solvents in chemical processes. Chemical Reviews118 (2017), 747–800.
  • [11] Welton T. Solvents and sustainable chemistry. Proceedings Royal Society A471 (2015), 1–26.
  • [12] Lomba L, Zuriaga E, Giner B. Solvents derived from biomass and their potential as green solvents. Current Opinion in Green and Sustainable Chemistry18(2019), 51–56.
  • [13] Sheldon RA. Green chemistry and resource efficiency: towards a green economy. Green Chemistry18 (2016), 1–10.
  • [14] George A, Brandt A, Zahari SMSNS, Klein-Marcuschamer D, Parthasarathi R, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Tran K, Singh S, Holmes B, Welton T, Simmons BA,HallettJP.Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry17 (2015), 1728–1734.
  • [15] Brandt-Talbot, A, Florence JV,Gschwend PSF, Lammensb TM, Tana B, Wealea J, HallettJP. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry19 (2017), 3078–3102.
  • [16] Meramo-Hurtado SI, Ojeda KA,Sanchez-Tuiran E. Environmental and safety assessments of industrial production of levulinic acid via acid-catalyzed dehydration. ACS Omega4 (2019), 22302–22312.
  • [17] Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry10 (2008), 13–30.
  • [18] Nda-Umar UI, Ramli I, Taufiq-Yap YH, Muhamad EN. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts9 (2019), 1–47.
  • [19] Jiang XC, Zhou CH, Tesser R, Serio MD, Tong DS. Coking of catalysts in catalytic glycerol dehydration to acrolein. Industrial & Engineering Chemistry Research57 (2018), 10736–10753.
  • [20] Beatriz A, Araújo YJK,Lima P. Glicerol: Um breve histórico e aplicação em sínteses estereosseletivas. Química Nova34 (2011), 306–319.
  • [21] Sivasankaran C, Ramanujam PK, Mani B, Balasubramanian J. Recent progress on transforming crude glycerol into high value chemicals : a critical review. Biofuels7269(2016), 309–314.
  • [22] Lari GM, Pastore G, Haus M, DingY,Papadokonstantakis S, Mondelli C,Pérez-Ramírez J. Environmental and economical perspectives of a glycerol biorefinery. Energy and Environmental Science11(2018), 1012–1029.
  • [23] Cintas P, Tagliapietra S, Gaudino EC, Palmisano G, Cravotto G. Glycerol: solvent and building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry16 (2014), 1056–1065.
  • [24] Wolfson A, Dlugy C, Shotland Y,Tavor D. Glycerol as solvent and hydrogen donor in transfer hydrogenation –dehydrogenation reactions. Tetrahedron Letters50 (2009), 5951–5953.
  • [25] GuY, Azzouzi A, Pouilloux Y, Jérôme F,Barrault J. Heterogeneously catalyzed etherification ofglycerol: New pathways for transformation of glycerol to more valuable chemicals. Green Chemistry10 (2008), 164–167.
  • [26] Gaudin P, Jacquot R, Marion P, Pouilloux Y,Jérôme F. Acid-catalyzed etherification of glycerol with long-alkyl-chain alcohols. ChemSusChem4(2011), 719–722.
  • [27] Gu Y, Jérôme F. Glycerol as a sustainable solvent for green chemistry. Green Chemistry12 (2010), 1127–1138.
  • [28] Gu Y, Barrault J, Jerome F. Glycerol as an efficient promoting medium for organic. Advanced Synthesis & Catalysis350 (2008), 2007–2012.
  • [29] Radatz CS, Silva RB, Perin G, Lenardão EJ, Jacob RG, Alves D. Catalyst-free synthesis ofbenzodiazepines and benzimidazoles using glycerol as recyclable solvent. Tetrahedron Letters52 (2011), 4132–4136.
  • [30] Azua A, Mata JA, Peris E. Iridium NHC based catalysts for transfer hydrogenation processes using glycerol as solvent and hydrogen donor. Organometallics30 (2011), 5532–5536.
  • [31] Meyer TH, Chesnokov GA, Ackermann L. Cobaltaelectro-Catalyzed C–H activation in biomass-derived glycerol: powered by renewable wind and solar energy. ChemSusChem13(2020),668-671.
  • [32] Sauermann N, Meyer TH, Qiu Y, Ackermann L. Electrocatalytic C − H Activation. ACS Catalysis8 (2018), 7086−7103.
  • [33] Li P, Wang Y, Hou Q, Liu H, Lei H, Jian B, Li X. Preparation of cellulose nanofibrils from okara by high pressure homogenization method using deep eutectic solvents. Cellulose27(2020), 2511-2520.
  • [34] González-Rivera J, Husanu E, Mero A, Duce C, Tinè MR, Felicia D, Christian S, Guazzelli L. Insights into microwave heating response and thermal decomposition behavior of deep eutectic solvents. Journal of Molecular Liquids(2019), 112357.
  • [35] Balaraman HB, Rathnasamy SK. High selective purification of IgY from quail egg : Process design and quantification ofdeep eutectic solvent based ultrasound assisted liquid phase microextraction coupled with preparative chromatograph. International Journal of Biological Macromolecules146 (2020), 253–262.
  • [36] Kurtulba E, Bilgin M, Makris DP, Selin Ş. Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery(2020), https://doi.org/10.1007/s13399-020-00606-3.
  • [37] Liu C, Si C, Wang G, Jia H, Ma L. A novel and efficient process for lignin fractionation in biomass-derived glycerol-ethanol solvent system. Industrial Crops & Products111 (2018), 201–211.
  • [38] Díaz-Álvarez AE, Francos J, Lastra-Barreira B, Crochet P,Cadierno V. Glycerol and derived solvents: New sustainable reaction media for organic synthesis. Chemical Communications(2011), 6208–6227.
  • [39] Wolfson A, Dlugy C, Shotland Y. Glycerol as a green solvent for high product yields and selectivities. Environmental Chemistry Letters5(2007), 67–71.
  • [40] Sanseverino AM. Microondas em síntese orgânica. Química Nova25(2002), 660–667.
  • [41] Lidstrom P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis-a review. Tetrahedron57(2001), 9225–9283.
  • [42] Estevez R, Lopez-Pedrajas S, Luna D,Bautista FM. Microwave-assisted etherification of glycerol with tert-butyl alcohol over amorphous organosilica-aluminum phosphates. Applied Catalysis B: Environmental213 (2017), 42–52.
  • [43] Quispe CAG, Coronado CJR, Carvalho JA. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews27 (2013), 475–493.
  • [44] Sutter M, Da Silva E, Duguet N, Raoul Y, Me E, Lemaire M. Glycerol Ether Synthesis : A Bench Test for Green Chemistry Concepts and Technologies. Chemical Reviews115 (2015), 8609−8651.
  • [45] Anitha M, Kamarudin SK,Kofli NT. The potential of glycerol as a value-added commodity. Chemical Engineering Journal295 (2016), 119–130.
  • [46] Fan Z, Zhao Y, Preda F, Clacens JM, Shi H, Wang L, Feng X, De Campo F. Preparation of bio-based surfactants from glycerol and dodecanol by direct etherification. Green Chemistry17 (2015), 882–892.
  • [47]J aworski MA, Rodríguez Vega S, Siri GJ, Casella ML, Romero Salvador A, Santos López A. Glycerol etherification with benzyl alcohol over sulfated zirconia catalysts. Applied Catalysis A: General505(2015), 36–43.
  • [48] Lemos COT, Rade LL, Barrozo MAdS, Cardozo-Filho L,Hori CE. Study of glycerol etherification with ethanol in fixed bed reactor under high pressure. Fuel Processing Technology178 (2018), 1–6.
  • [49] Pinto BP, De Lyra JT, Nascimento JAC,Mota CJA.Ethers of glycerol and ethanol as bioadditives for biodiesel. Fuel168 (2016), 76–80.
  • [50] Samoilov VO, Ramazanov DN, Nekhaev AI, Maximov AL, Bagdasarov LN. Heterogeneous catalytic conversion of glycerol to oxygenated fuel additives. Fuel172(2016), 310–319.
  • [51] Viswanadham N, Saxena SK. Etherification of glycerol for improved production of oxygenates. Fuel103 (2013), 980–986.
  • [52] Fang W, Wang S, Liebens A, De Campo F, Xu H, Shen W, Pera-Titus M,Clacens JM. Silica-immobilized Aquivion PFSA superacid: application to heterogeneous direct etherification of glycerol with n-butanol. Catalysis Science and Technology5 (2015), 3980–3990.
  • [53] Leal-Duaso A, Pe P, Garcıa I, Pires E, Mayoral A. Glycerol as a source of designer solvents : physicochemical properties of low melting mixtures containing glycerol ethers and ammonium salts. PCCP19(2017), 28302–28312.
  • [54] Ruppert AM, Meeldijk JD, Kuipers BWM, Erné BH,Weckhuysen BM. Glycerol etherification over highly active CaO-based materials: New mechanistic aspects and related colloidal particle formation. Chemistry -A European Journal14 (2008), 2016–2024.
  • [55] Latyshev NA, Ermakova SP, Ermolenko EV, Imbs AB, Kasyanov SP, Sultanov RM. 1 ‐O‐ alkylglycerols from the hepatopancreas of the crab Paralithodes camtschaticus, liver of the squid Berryteuthis magister, and liver of the skate Bathyraja parmifera, and their anticancer activity on human melanoma cells. Journal of Food Biochemistry43 (2019), 1-7.
  • [56] Vinçon-Laugier A, Cravo-Laureau C,Grossi V. Selective preservation among bacterial alkyl glycerol ether lipid structures during long term oxic and anoxic incubation. Organic Geochemistry125(2018), 24–28.
  • [57] Yokota M, Yahagi S, Tokudome Y, Masaki H. Chimyl alcohol suppresses PGE 2 synthesis by human epidermal keratinocytes through the activation of PPAR-γ. Journal of Oleo Science462 (2018), 455–462.
  • [58] Leal-Duaso A, PerezP, MayoralJA, Garc JI, Pires E. Glycerol-derived solvents: synthesis and properties of symmetric glyceryl diethers. ACS Sustainable Chemistry & Engineering15 (2019), 13004–13014.
  • [59] Ruppert AM, Parvulescu AN, Arias M, Hausoul PJC, Bruijnincx PCA, Klein Gebbink RJM,Weckhuysen BM. Synthesis of long alkyl chain ethers through direct etherification of biomass-based alcohols with 1-octene over heterogeneous acid catalysts. Journal of Catalysis268 (2009), 251–259.
  • [60] Sutter M, Dayoub W, Métay E, Raoul Y,Lemaire M. 1-O-alkyl (di)glycerol ethers synthesis from methyl esters and triglycerides by two pathways: catalytic reductive alkylation and transesterification/reduction. Green Chemistry15 (2013), 786–797.
  • [61] Gonzalez-Arellano C, Grau-Atienza A, Serrano E, Romero AA, Garcia-Martinez J, Luque R. The role of mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. Journal of Molecular Catalysis A: Chemical406 (2015), 40–45.
  • [62] Cannilla C, Bonura G, Frusteri L, Frusteri F. Batch reactor coupled with water permselective membrane: study of glycerol etherification reaction with butanol. Chemical Engineering Journal282 (2015), 187–193.
  • [63] García JI, García-Marín H, Pires E. Glycerol based solvents: Synthesis, properties and applications. Green Chemistry16(2014), 1007–1033.
  • [64] da Silva CRB, Gonçalves VLC, Lachter ER, Mota CJA. Etherification of glycerol with benzyl alcohol catalyzed by solid acids. Journal of the Brazilian Chemical Society20 (2009), 201–204.
  • [65] Gaudin P, Jacquot R, Marion P, Pouilloux Y, Jérôme F. Homogeneously-catalyzed etherification ofglycerol with 1-dodecanol. Catalysis Science and Technology1 (2011), 616–620.
  • [66] Veiga PM, Gomes ACL, de Veloso CO, Henriques CA. Etherification of different glycols with ethanol or 1-octanol catalyzed by acid zeolites. Molecular Catalysis458 (2018), 261–271.
  • [67] Klepáčová K, Mravec D,Bajus M. Tert-Butylation of glycerol catalysed by ion-exchange resins. Applied Catalysis A: General294 (2005), 141–147.
  • [68] Werpy T, Petersen G. Top Value Added Chemicals from Biomass Volume I —Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume I : Results of Screening for Potential Candidates. (2004).
  • [69] Zhang J, Wu S, Li B,Zhang H. Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem4(2012), 1230–1237.
  • [70] Morone A, Apte M, Pandey RA. Levulinic acid productionfrom renewable waste resources:Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews51 (2015), 548–565.
  • [71] Yan K, Jarvis C, Gu J, Yan Y. Production and catalytic transformation of levulinic acid:A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews51(2015), 986–997.
  • [72] Xu X, Zhang X, Zou W, Yue H, Tian G, Feng S. Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite. Catalysis Communications62 (2015), 67–70.
  • [73] Rackemann DW, Doherty WOS, Crops T. The conversion of lignocellulosics to levulinic acid. Biofuels, bioproducts & Biorefining5 (2011), 198-214.
  • [74] Runge T, Zhang C. Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid. Industrial & Engineering Chemistry Research51,(2012), 3265–3270.
  • [75] Alonso DM, Wettstein SG,Dumesic JA. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry15 (2013), 584–595.
  • [76] Al-Shaal MG, Dzierbinski A, Palkovits R. Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis. Green Chemistry16 (2014), 1358–1364.
  • [77] Deng L, Li J, Lai D, Fu Y,Guo Q. Catalytic conversion of biomass-derived carbohydrates into -valerolactone without using an external H2 supply. Angewandte Chemie48 (2009), 6529–6532.
  • [78] Jiang Y, Yang L, Bohn CM, Li G, Han D, Mosier NS, Miller JT, Kenttämaa HI, Abu-Omar MM. Speciation and kinetic study of iron promoted sugar conversion to 5-Hydroxymethylfurfural (HMF)and levulinic acid (LA). Organic Chemistry Frontiers2 (2012), 1388–1396.
  • [79] WangK, Ye J, Zhou M, Liu P, Liang X,Xu J. Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose24(2017), 1383–1394.
  • [80] Han Y, Ye L,Gu X, Zhu P,Lu X. Lignin-based solid acid catalyst for the conversion of cellulose tolevulinic acid using γ-valerolactone as solvent. Industrial Crops & Products127 (2019), 89–93.
  • [81] Tiong YW, Yap CL, Gan S, Soo W, Yap P. Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Industrial & Engineering Chemistry Research57 (2018), 4749–4766.
  • [82] RenH, Girisuta B, Zhou Y, Liu L. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. Cabohydrate Polymers117 (2015), 569–576.
  • [83] Kumar VB, Pulidindi IN, Mishra RK, Gedanken A. Development of Ga salt of molybdophosphoric acid for biomass conversion to levulinic acid. Energy & Fuels30 (2016), 10583–10591.
  • [84] Chen SS, YuI KM, Tsang DCW, Yip ACK, Khan E, Wang L, Ok YS, Poon CS. Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids Temperature and solvent effects. Chemical Engineering Journal327 (2017), 328–335.
  • [85] Kumar S, Ahluwalia V, Kundu P, Sangwan RS, Kansal SK, Runge TM, Elumalai S. Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology251(2018), 143–150.
  • [86] Kang S,Yu J. An intensified reaction technology for high levulinic acid concentration from lignocellulosic biomass. Biomass and Bioenergy95 (2016), 214–220.
  • [87] Saravanamurugan S, Buu ONV,Riisager A. Conversion of mono-and disaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid-functionalized ionic liquids. ChemSusChem4 (2011), 723–726.
  • [88] Jeong H, Park S-Y, Ryu G-H, Choi J-H, Kim J-H, Choi W-S, Lee SM, Choi JW, Choi I-G Catalytic conversion of hemicellulosic sugars derived from biomass to levulinic acid. Catalysis Communications117 (2018), 19–25.
  • [89] Kang S, Yu J. Maintenance of a highly active solid acid catalyst in sugar beet molasses for levulinic acid production. Sugar Techonology20 (2018), 182–193.
  • [90] Signoretto M, Taghavi S, Ghedini E, Menegazzo F. Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules24 (2019), 2760–2780.
  • [91] Ya’aini N, Amin NAS, Asmadi M. Optimization of levulinic acid from lignocellulosic biomass using anew hybrid catalyst. Bioresource Technology116(2012), 58–65.
  • [92] Li X, Lei T, Wang Z, Li X, Wen M, Yang M, Chen G, He X, Xu H, Guan Q,Li Z. Catalytic pyrolysis of corn straw with magnetic solid acid catalyst to prepare levulinic acid by response surface methodology. Industrial Crops & Products116 (2018), 73–80.
  • [93] LombaL, Giner B, Bandres I, Lafuente C,Rosa Pino M. Physicochemical properties of green solvents derived from biomass. Green Chemistry13 (2011), 2062–2070.
  • [94] Démolis A, Essayem N,Rataboul F. Synthesis and applications of alkyl levulinates. ACS Sustainable Chemistry & Engineering2 (2014), 1338–1352.
  • [95] Girisuta B,Heeres HJ. Levulinic acid from biomass: synthesis and applications. In Fang Z, Smith Jr. R, Qi X. (Eds.)Production ofPlatform Chemicals from Sustainable Resources, Springer, Singapore(2017), 143–169.
  • [96] Marcel R, Durillon T, Djakovitch L, Fache F, Rataboul F. First example of the use of biosourced alkyl levulinates as solvents for synthetic chemistry: application to the heterogeneously catalyzed heck coupling. ChemistrySelect4(2019), 3329–3333.
  • [97] Di X, Zhang Y, Fu J, Yu Q, Wang Z,Yuan Z. Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochemistry81(2019), 33–38.
  • [98] Bosilj M, Schmidt J, Fischer A, White RJ. One pot conversion of glucose to ethyl levulinate over aporous hydrothermal acid catalyst in green solvents. RSC Advances9 (2019), 20341–20344.
  • [99] Yang J, Ao Z, Wu H, Zhang S, Chi C, Hou C. Waste paper-derived magnetic carbon composite : Anovel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol. Renewable Energy146(2020), 477–483.
  • [100] Feng J, Zhang L, Jiang J, Shupe TF, Pan H,Hse C. Directional synergistic conversion oflignocellulosic biomass with matching-solvents for added-value chemicals. Green Chemistry21 (2019), 4951–4957.
  • [101] Liang X, Fu Y, Chang J. Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with biomass-based catalyst. Fuel259 (2020), 116246.
  • [102] Guan Q, Lei T, Wang Z, Xu H, Lin L, Chen G, Li X, Li Z. Preparation of ethyl levulinate from wheat straw catalysed by sulfonate ionic liquid. Industrial Crops & Products113 (2018), 150–156.
  • [103] Sah PTP, Ma S-Y Levulinic acids and its esters. Journal of American Chemical Society 52 (1930), 4880–4883.
  • [104] Schuette HA, Cowley MA. The vapor pressures of its Alkyl Esters.Journal of American Chemical Society53 (1931), 3485–3489.
  • [105] Ferrer B, Prats LG, Company CE, Boliart JC. Degreasing compositions derived from levulinic acid (A compound obtainable from biomass) and process for degrasing metal surfaces. (2013), WO2013000998A1.
  • [106] Horvath IT, Mehdi H, Fábos V, Boda L, Mika LT. -Valerolactone —a sustainable liquid for energy and carbon-based chemicals. GreenChemistry10(2008), 238-242.
  • [107] Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A,Vaccaro L. A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chemistry17 (2015), 365–372.
  • [108] Abdelrahman OA, Heyden A,Bond JQ. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid To Form γ Valerolactone over Ru/C. ACS Catalysis4 (2014), 1171–1181.
  • [109] Cui J, Tan J, Deng T, Cui X, Zheng H, Zhu Y, Li Y. Direct conversion of carbohydrates to γ-valerolactone facilitated by solvent effect. Green Chemistry17 (2015), 3084–3089.
  • [110] Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ,Jarnefeld JL. Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling28 (2000), 227–239.
  • [111] Götz K, Liese A, Ansorge-Schumacher M, Hilterhaus L. A chemo-enzymatic route to synthesize (S)-γ-valerolactone from levulinic acid. Applied Microbiology and Biotechnology97 (2013), 3865–3873.
  • [112] Al-Shaal MG, Wright WRH, Palkovits R. Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chemistry14 (2012), 1260–1263.
  • [113] Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y,Fan K-N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry14 (2012), 935–939.
  • [114] Obregon I, Gandarias I, Al-Shaal MG, Mevissen C, Arias PL, Palkovits R. The role of the hydrogen source on the selective production of g-valerolactone and 2-methyltetrahydrofuran from levulinic acid. ChemSusChem9 (2016), 2488–2495.
  • [115] Chia M, Dumesic JA. Liquid-phase catalytictransfer hydrogenation and cyclization of levulinic acid and its esters to c-valerolactone over metal oxide catalysts. Chemical Communications47 (2011), 12233–12235.
  • [116] Fábos V, Mika LT, Horváth IT. Selective conversion of levulinic and formic acids to γ valerolactone with the shvo catalyst. Organometallics33 (2014), 181–187.
  • [117] Son PA, Nishimura S, Ebitani K. Production of y-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent.RSC Advances4 (2014), 10525–10530.
  • [118] Wainwright MS, Ahn T, Trimm DL, Cant NW. Solubility of hydrogen in alcohols and esters. Journal of Chemistry & Engineering Data24(1987), 22–24.
  • [119] Purwanto RM, Deshpande RM, Chaudhari RV, Delmas H. Solubility of hydrogen, carbon Monoxide, and 1-octene in various solvents and solvent mixtures. Journal of Chemistry & Engineering Data9568 (1996), 1414–1417.
  • [120] ShimizuK, Kanno S, Kon K. Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded carbon catalysts. Green Chemistry16 (2014), 3899–3903.
  • [121] Yi Z, Hu D, Xu H, Wu Z, Zhang M, Yan K. Metal regulating the highly selective synthesis ofgamma-valerolactone and valeric biofuels from biomass-derived levulinic acid. Fuel259 (2020), 3–6.
  • [122] Liu Z, Yang Z, Wang P, Yu X, Wu Y, Wang H, Liu Z. Co-catalyzed hydrogenation of levulinic acid to γ-valerolactone under atmospheric pressure. ACS Sustainable Chemistry & Engineering7(2019), 18236–18241.
  • [123] Murugesan K, Alshammari AS, Sohail M,JagadeeshRV. Levulinic acid derived reusable cobalt-nanoparticles-catalyzed sustainable synthesis of γ-valerolactone. ACS Sustainable Chemistry & Engineering7 (2019), 14756–14764.
  • [124] Hegner J,Pereira KC, Deboef B,Lucht BL. Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Letters51 (2010), 2356–2358.
  • [125] Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG. Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 5 (Hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society135 (2013), 3997–4006.
  • [126] Mellmer MA, Alonso M, Luterbacher JS, Marcel J, Gallo R, Dumesic JA. Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chemistry16 (2014), 4659–4662.
  • [127] Phanopoulos A, White AJP, Long NJ, Miller PW. Catalytic transformation of levulinic acid to2 methyltetrahydrofuran using ruthenium −N triphos complexes. ACS Catalysis5 (2015), 2500–2512.
  • [128] Ortiz-Cervantes C, Flores-Alamo M, García JJ. Hydrogenation of biomass-derived levulinic acid into γ valerolactone catalyzed by palladium complexes. ACS Catalysis5 (2015), 1424−1431.
  • [129] Omoruyi U, Page S, Hallett J, Miller PW. Homogeneous catalyzed reactions of levulinic acid: to g-valerolactone and beyond. ChemSusChem9(2016), 1–12.
  • [130] Stangeland EL, Sammakia T. Use of Thiazoles in the Halogen Dance Reaction : Application to the Total Synthesis of WS75624 B. Journal of Organic Chemistry69(2004), 2381–2385.
  • [131] Starodubtseva EV, Turova OV, Vinogradov MG, Gorshkova LS, Ferapontov VA. Enantioselective hydrogenation of levulinic acid esters in the presence of the Ru II —BINAP —HCl catalytic system. Russian Chemical Bulletin, International Edition54(2005), 2374–2378.
  • [132] Starodubtseva EV, Turova OV, Vinogradov MG, Gorshkova LS, Ferapontov VA, Struchkova MI. Aconvenient route to chiral g-lactones via asymmetric hydrogenation of g-ketoesters using the RuCl3 –BINAP –HCl catalytic system. Tetrahedron64 (2008), 11713–11717.
  • [133] Pace V, Hoyos P, Castoldi L, de María PD, Alcantara AR.2-Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem5 (2012), 1369–1379.
  • [134] Mondal M, Bora U. Eco-friendly Suzuki–Miyaura coupling of arylboronic acids to aromatic ketones catalyzed by the oxime-palladacycle in biosolvent 2-MeTHF. New Journal of Chemistry40 (2016), 3119–3123.
  • [135] Khoo HH, Wong LL, Tan J, Isoni V,Sharratt P. Resources, Conservation and Recycling Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA. Resources, Conservation & Recycling, 95(2015), 174–182.
  • [136] Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP. Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Organic Process, Research & Development15(2011), 939–941.
  • [137] Serrano-Ruiz JC, West RM, Dumesic JA. Catalytic conversion of renewable biomass resources tofuels and chemicals. Annual Review of Chemical and Biomolecular Engineering1(2010), 79–100.
  • [138] Zhang G, Li W, Fan G, Yang L, Li F. Controlling product selectivity by surface defects over MoOx-decorated Ni-based nanocatalysts for c-valerolactone hydrogenolysis. Journal of Catalysis379 (2019), 100–111.
  • [139] Novodárszki G, Solt HE, Valyon J, Lónyi F, Hancsók J, Deka D, Tubaa R, Mihályi MR. Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catalysis Science and Technology9 (2019), 2291–2304.
  • [140] Xie Z, Chen B, Wu H, Liu M, Liu H, Zhang J, Yanga G, Han B. Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Ni–Cu/Al2O3–ZrO2 bifunctional catalysts. Green Chemistry21 (2019), 606–613.
  • [141] Ocio A, Arias PL, Obregón I, Gandarias I, Miletic N. One-pot 2-methyltetrahydrofuran production from levulinic acid in green solvents using Ni-Cu/Al2O3 catalysts. ChemSusChem8 (2015),3483–3488.
  • [142] Gilkey MJ, Xu B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading matthew. ACS Catalysis6 (2016), 1420–1436.
  • [143] Kazmi A. Green chemistry and the biorefinery. in Kazmi A, Shuttleworth P. (Eds.) Economic Utilisation of Food Co-Products. RSC, Cambridge UK(2013), 1–24.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4de5978-2726-48ed-98ef-d2cc543aeed3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.