PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal and morphological studies of additively manufactured CFRP composites under thermal loadings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this experimental work is to study the thermal and morphological properties of carbon fiber reinforced polymer (CFRP) as polymeric composites printed using additive manufacturing via material extrusion. The printed samples were exposed to prolonged temperatures at 65◦C, 145◦C, 0◦C and -20◦C. Differential Scanning Calorimetry (DSC) was performed to analyze the thermal properties of CFRP composites and the scanning electron microscope (SEM) was utilized to study the morphological structure of the sample groups after thermal treatment. The specimens subjected to cyclic heating at hot temperatures have higher glass transition temperature (Tg) values than the prolonged groups. The visual examination of the morphological structure at the surface showed a slight deterioration in the morphological surface before and after thermal treatment at above-zero degrees Celcius. The higher the magnitude of the temperature treatment at above-zero degrees, the more damage is possessed in the polymer parts.
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences 14 Fiszera Street, 80-231, Gdansk, Poland
Bibliografia
  • [1] A. Ghasemi and M. Moradi, “Low thermal cycling effects on mechanical properties of laminated composite materials,” Mechanics of Materials, vol. 96, pp. 126–137, 2016.
  • [2] M. Lafarie-Frenot and N. Ho, “Influence of free edge intralaminar stresses on damage process in cfrp laminates under thermal cycling conditions,” Composites Science and Technology, vol. 66, no. 10, pp. 1354–1365, 2006.
  • [3] Z. Razak, A. B. Sulong, N. Muhamad, C. H. C. Haron, M. K. F. M. Radzi, N. F. Ismail, D. Tholibon, and I. Tharazi, “Effects of thermal cycling on physical and tensile properties of injection moulded kenaf/carbon nanotubes/polypropylene hybrid composites,” Composites Part B: Engineering, vol. 168, pp. 159–165, 2019.
  • [4] C. Ma, D. Sánchez-Rodríguez, and T. Kamo, “Influence of thermal treatment on the properties of carbon fiber reinforced plastics under various conditions,” Polymer Degradation and Stability, vol. 178, p. 109199, 2020.
  • [5] N. Hancox, “Thermal effects on polymer matrix composites: Part 1. thermal cycling,” Materials & Design, vol. 19, no. 3, pp. 85–91, 1998.
  • [6] K. Shivakumar and A. Bhargava, “Failure mechanics of a composite laminate embedded with a fiber optic sensor,” Journal of composite materials, vol. 39, no. 9, pp. 777–798, 2005.
  • [7] C. Lüders, D. Krause, and J. Kreikemeier, “Fatigue damage model for fibre-reinforced polymers at different temperatures considering stress ratio effects,” Journal of Composite Materials, vol. 52, no. 29, pp. 4023–4050, 2018.
  • [8] O. Mysiukiewicz, M. Barczewski, and A. Kloziński, “The influence of sub-zero conditions on the mechanical properties of polylactide-based composites,” Materials, vol. 13, no. 24, p. 5789, 2020.
  • [9] S. Kuciel, K. Mazur, and M. Hebda, “The influence of wood and basalt fibres on mechanical, thermal and hydrothermal properties of pla composites,” Journal of Polymers and the Environment, vol. 28, pp. 1204–1215, 2020.
  • [10] M. Handwerker, J. Wellnitz, H. Marzbani, and U. Tetzlaff, “Annealing of chopped and continuous fibre reinforced polyamide 6 produced by fused filament fabrication,” Composites Part B: Engineering, vol. 223, p. 109119, 2021.
  • [11] M. Zhang, B. Sun, and B. Gu, “Accelerated thermal ageing of epoxy resin and 3-D carbon fiber/epoxy braided composites,” Composites Part A: Applied Science and Manufacturing, vol. 85, pp. 163–171, 2016.
  • [12] C. Pascual-González, P. San Martin, I. Lizarralde, A. Fernández, A. León, C. Lopes, and J. Fernández-Blázquez, “Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites,” Composites Part B: Engineering, vol. 210, p. 108652, 2021.
  • [13] K. Wang, H. Long, Y. Chen, M. Baniassadi, Y. Rao, and Y. Peng, “Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites,” Composites Part A: Applied Science and Manufacturing, vol. 147, p. 106460, 2021.
  • [14] Y. Ma, S. Jin, M. Ueda, T. Yokozeki, Y. Yang, F. Kobayashi, H. Kobayashi, T. Sugahara, and H. Hamada, “Higher performance carbon fiber reinforced thermoplastic composites from thermoplastic prepreg technique: Heat and moisture effect,” Composites Part B: Engineering, vol. 154, pp. 90–98, 2018.
  • [15] M. Martin, F. Rodríguez -Lence, A. Güemes, A. . Fernández -López, L. A. Perez-Maqueda, and A. Perejon, “On the determination of thermal degradation effects and detection techniques for thermoplastic composites obtained by automatic lamination,” Composites Part A: Applied Science and Manufacturing, vol. 111, pp. 23–32, 2018.
  • [16] E. Van Cappellen and A. Schmitz, “A simple spot-size versus pixel-size criterion for X-ray microanalysis of thin foils,” Ultramicroscopy, vol. 41, no. 1-3, pp. 193–199, 1992.
  • [17] S. Vyazovkin, Isoconversional kinetics of thermally stimulated processes. Springer, 2015.
  • [18] C. A. Gracia-Fernández, S. Gomez-Barreiro, J. López-Beceiro, S. Naya, and R. Artiaga, “New approach to the double melting peak of poly (l-lactic acid) observed by DSC,” Journal of Materials Research, vol. 27, no. 10, pp. 1379–1382, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4dcacd8-91fc-409a-b120-7303e24d7784
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.