
Computer Applications in Electrical Engineering

Model predictive control of the two-mass drive system 
with mechanical backlash

Piotr J. Serkies, Krzysztof Szabat 
Wrocław University of Technology 

50-372 Wrocław, ul. Smoluchowskiego 19, e-mail: Piotr.Serkies@ pwr.wroc.pl;
Krzysztof.Szabat@ pwr.pl

In the paper an application of the model predictive controller for the drive system with 
elasticity and backlash is presented. In the introduction the control problem of the drive 
system with mechanical backlash is introduced. Next, the mathematical model of the drive 
is presented. Then the predictive algorithm is described briefly. The performance of the 
predictive controller is examined in the simulation study. The influence of the changing of 
the matrix Q is tested.

1. Introduction

The nonlinearities of the mechanical part of the drive, such as friction or backlash 
decrease the performance the system [1]-[4]. The mechanical backlash evident in 
gearboxes shortens the life-time of the whole drive system [2]-[4]. This is especially 
evident in multi-mass systems in which the load (machine) is connected to a driving 
motor through one or multiple flexible shafts. Excessive shaft twists and poorly 
damped torsional vibrations are detrimental to the drive’s performance, greatly 
decreasing product quality and system reliability, and in some cases leading to 
instability and failure of the entire drive system. This problem commonly occurs in 
rolling-mill drives, belt-conveyors, paper machines, robotic-arm drives including 
space manipulators, servo-drives and throttle systems [1]-[12].

The control methodologies developed in this type of the drive may be based on 
linear PI controllers with an additional feedback [1, 3, 5, 6], state controllers [6], or 
robust controllers using the H  control law [7].

In recent years, model predictive control (MPC) has been widely investigated 
for its potential in controlling modern electrical drives and power electronics 
circuits [15]—[18]. Predictive control presents several advantages that make it 
suitable for the control of power converters and drives. The central feature of MPC 
is that it enables the process operating and physical constraints (due to e.g. resource 
limitations, operational or safety concerns as well as limits arising from various 
economic objectives) to be taken directly into consideration in the control problem 
formulation so that any potential constraint violations are anticipated and 
prevented. Additionally, as the control input is obtained by solving an optimization
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problem at each sampling time, it can ensure truły optimal performance of the 
closed-loop control system [8]-[12].

The main contribution of this paper is the design and validation of an explicit 
model predictive controller for a two-mass elastic drive system with mechanical 
backlash. The explicit version of the MPC algorithm presented here does not 
involve complex optimization to be performed in a control unit but requires only a 
piecewise linear function evaluation, which can be realized through a simple look- 
up table approach. The effect of the additional input of the system, on the drive 
dynamic not considered in the literature is examined. Also the robustness of the 
control structure to the changes of the mechanical gap is considered.

2. The mathematical model of the drive
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Many industrial drive systems can be modeled as two-mass systems, where the 
first mass represents the moment of inertia of the motor and the second mass refers 
to the moment of inertia of the load machine. In this paper, the commonly used 
inertia-free-shaft dual-mass system model will be employed, which is described by 
the following normalized differential equations
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where: o  ,0 2  -  motor and load speeds, me, ms, mL -  electromagnetic, shaft ad load 
torques, a2 -  shaft position (on the load side), Tu T2 -  mechanical time constant of 
the motor and the load machine, Tc -  stiffness time constant, ab a2 -  mechanical 
angle of the motor and the load machine, ф(ЛѲ) -  the function of the mechanical 
couplings.

The backlash is described by the following function:
A Ѳ — £ dla

^(A Ѳ ) = <0 dla АѲ < £ (2)
АѲ — £ dla АѲ > £
0 dla АѲ < £
АѲ + £ dla АѲ < £
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where: £ is the backlash width. The block diagram of the considered system is 
presented in Fig.1. The main parameters of the considered system are as follows:
T1=T2=203ms oraz Tc=1,2ms.
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Fig. 1. The block diagram of the considered system 

3. The predictive control structure

The control structure for the considered electrical drive system is shown in 
Fig. 2. The inner torque loop (here for simplicity represented as a single block) is 
composed of the power converter, electromagnetic part of the motor, current sensor 
and respective current or torque controller. As this control loop is designed to 
provide sufficiently fast torque control, it can be approximated by an equivalent 
first order term with a small time constant. For a well-tuned torque controller, the 
drive machines could be AC or DC motors without any impact on the outer speed 
control loop. The outer loop consists of the mechanical part of the motor, speed 
sensor and speed controller with reference ar. For the estimation of signals 
required in the MPC control structure, the Luenberger observer is used in this 
paper.
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Fig. 2. The schematic diagram of the considered control structure

In its core, Model Predictive Control employs an explicit process model that is 
used to predict the effect of future actions of the manipulated variables on the 
process output. The model choice is open but typically the following linear 
discrete-time state-space form is considered [13]-[14]:
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x(t +1) = Ax(t) + Bu(t)

y (t) = Cx(t) (4)
where x(t)e‘Kn, u (t)e^ m, y(t) e ^ p are the state, input and output variables, 
respectively, and A e ^ nXn, B e ^  nXm C pXn are known time-invariant system 
matrices.

Let yk denote the prediction of the output variable at a future time k, given the 
input sequence uk, an initial state x0 and the model (2). At each time step k, an 
MPC algorithm attempts to optimize future plant behavior while respecting the 
system input/output constraints by solving the following optimization problem 
[13]-[14]

min ^  N—— ,t^ „  V^..TZ yTQyk + Z uTRuk (5)nT nT /_^Jk^ k ^  k
M0 VJ Nc—1 k=0 k=0
subject to: umin -  u -  u max k = °,1,L , Nc—1 (6)

xmin -  x -  x_  k = 0,1, l ,  Np 
xk+1 = Axk + Bu k , k > 0, 
y k = Cx k k > 0
x 0 = x(0),

where: Q > and R > 0 denote the weighting matrices and Np and Nc are the 
prediction and control horizons, respectively. Constraints umin and umax arise 
naturally from physical restrictions of control actuators whereas restrictions due to 
safety, quality, environmental and economic targets may be incorporated in xmin 
and xmax.

The implementation of the MPC controller amounts to solving problem (3) on- 
line for a given x0 in a receding horizon fashion. This means that, at time k, only 
the first element u0* of the optimal input sequence is applied to the plant and the 
remaining future control actions ui ,...,u Nc_i are discarded. At the next time step 
the whole procedure is repeated for the new measured or estimated output y(k + 1)
[13]-[14]. This strategy can be computationally intensive for systems with fast 
sampling requirements thus greatly limiting the scope of applicability to systems 
with relatively slow dynamics. Alternatively, rather than using the initial state x0 to 
“update” the optimization problem (3) at each time k, the idea is to treat the state 
vector as a parameter vector and then solve problem (3) off-line for all realizations 
of X0 within a predefined set of states using multi-parametric programming [15]- 
[20]. In this strategy, the parameter space is subdivided into characteristic regions 
where the optimizer is given as an explicit piecewise affine (PWA) function of the 
parameters:

u* (x0) = K rx0 + gr, Vx e Pr (6)
where Pr are polyhedral sets defined as

Pr = {xe ^ n | H rx -  d r }, r  = 1,...Nr (7)
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Here Nr > 0 represents the total number of polyhedral regions in the partition. The 
main advantage of this approach is that the optimal input u0 for a given initial state 
x0 can be obtained by evaluating a PWA function in the control unit thus greatly 
simplifying the controller implementation process as numerical optimization is no 
longer required [15]-[20].

As an internal model of the plant used for the optimization problem, a linear 
model of the two-mass system is used (7). Consequently, the mechanical backlash 
is omitted for the prediction of the future response of the object.

d_
dt
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The considered model includes two additional variables, namely the reference 
speed and the load torque. The main design parameters of the MPC controller are 
the following: prediction horizon, the selection of the inputs, and the values of the 
cost matrices Q and R.

3. The study

In this section, the proposed single-loop explicit MPC control strategy for the 
drive system with an elastic coupling will be evaluated through simulations. A 
primary design objective for the MPC controller is to ensure that the load speed 
response follows the set-point with the desired dynamics. This needs to be 
achieved without generating excessive shaft torque responses and without violating 
the input and output constraints of the drive. The first two requirements can be 
addressed by defining the following auxiliary output variables:

= (  - a ef)
,ref ) (9)

У 1

y  2 =  ( a  -  a

У 3  = ( s -  m i )

У  4 =  ( a  — a 2 )

where: yi, y2 account for tracking performance, y3 relates to load-shaft torque 
imbalance. The factor y4 reduces the difference of the speed which reduces the 
maximal shaft torque. Due to (9) the reference speed variable and the disturbance 
torque need to be directly incorporated into the drive system model.

1

+
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The task of the MPC controller is to bring the output variables (9) to zero by 
manipulating mer while respecting the safety and physical limitations of the drive 
system:

— ™er -  mer -  ™er (10)
m, -  m -  m. (11)

The selection of the prediction and control horizons is a compromise between 
the drive performance and computational complexity. In practice, Nc -  Np to avoid 
large computational burden for the standard MPC and large number of regions for 
the explicit MPC. In this paper, the state variables will be predicted using a 10ms 
prediction window, whereas the control input will be calculated over 1ms intervals. 
This translates to Np = 10, Nc = 2. The R is set to the 0,0001. The limit of the 
electromagentic torque is set to ±3[p.u], and the shaft torque to ±1.5[p.u].

In the first step the influence of the fourth input and the changing of the value q4 
on the value of the cost function and the location of the MPC controller regions is 
presented. The investigated characteristic is depicted in Fig. 3. As can be 
concluded from the presented characteristic, the variation of the q4 value influences 
the cost function significantly (Fig. 3a). Also the controller regions are changing 
according to the value q4.
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Fig. 3. The relationship between the cost function value and the value of the speed for the two value 
of the q4  (a), and controller regions (b,c,d) for diag(Q)=[7.5 15 1 0] (b), diag(Q)=[7.5 15 1 10] (c),

diag(Q)=[7.5 15 1 29] (d)
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The transients of the system state variables for different q4 value are presented 
in Fig. 4. The enlarged fragments of those transients are displayed in Fig. 5.
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t [s]

t[s]

Fig. 4. Transients of the system state variable: electromagnetic torque (a), motor speed (b), shaft 
torque (c) and load speed (d) for different value of q4
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Fig. 5. Enlarged transients of the system state variable: electromagnetic torque (a), motor speed (b), 
shaft torque (c) and load speed (d) for different value of q4

0

As can be deduced from the presented figures, the increase of the value q4 
makes the torques decline when the gap of the backlash is closing (Fig. 5a,c). At 
the same time, the increase of the q4 value slowest the system responses to the
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changing of the load torque. The dynamics of the control structure is reduced and 
the system needs more time to eliminate the static error. It stems from the fact that 
the bigger value of the q4 counteracts the large difference between the motor and 
the load speeds. Thus, that the motor cannot accelerate as dynamically as in the 
case when the input q4 is neglected.

Then, the influence of the backlash width on the dynamics of the system has been 
investigated. At this point the values of the matrix Q are constant and equal 
(diag(Q)=[7.5 15 1 29]). The transients of the system are presented in Fig. 6. 
Similarly as in the previous case the fragments of the transients are shown in Fig. 7.

It is obvious from the presented results that the considered system is robust to 
changes of the backlash gap within the selected range without visible performance 
degradation. The two backlash parts hit each other softly. Even the system with a 
relatively big gap equal to 11,4 degree works correctly. The only noticeable 
difference between the tested systems exists during the start-up. SO, the bigger the 
gap of the backlash, the slower response time of the plant. This effect can be 
reduced by decreasing in the value q4. In that case the speed of the motor will starts 
more dynamical, which results in the shortening the settling time of the plant. The 
reaction of the system to the changing of the load torque is the same in every tested 
structure.

Then the system was tested for the nominal value of the speed. In this case the 
shaft torque was limited at the maximal set value by the MPC algorithm. The 
obtained results for two values of q4 are demonstrated in Fig. 8.
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Fig. 6. Transients of the system state variables: electromagnetic torque (a), motor speed (b), shaft 
torque (c) and load speed (d) for different value of the backlash gap
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Fig. 7. Enlarged transients of the system state variable: electromagnetic torque (a), motor speed (b), 
shaft torque (c) and load speed (d) for different value of the backlash gap
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Fig. 8. The transients of the system state variable: electromagnetic torque (a), motor speed (b), shaft 

torque (c) and load speed (d) for different value of q4  and nominal value of the system speed
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The drive system works properly and the system speeds follow the reference 
value with the desired dynamics (results from the values of the matrices Q and R) 
taking into account the system constraints. At the times t1=35ms and t2=100ms the 
electromagnetic torque decreased rapidly in order to avoid the validation of the 
shaft torque constrains. In the electromagnetic torque transients some overshoots 
(over the limit) are visible resulting from the neglected dynamic of the motor 
torque control loop. The application of the load torque causes a quickly eliminated 
speed fall.

4. Conclusions

The paper is devoted to issues related to the application of the MPC control 
structure to the two-mass system with backlash are presented. In order to damp 
torsional vibrations an MPC controller based on the linear model is applied. From the 
presented study the following conclusions can be formulated:
- The application of the MPC control structure to the drive system with mechanical 

backlash allows to damp the torsional vibrations effectively.
- The proposed MPC strategy allows to close the mechanical gap of the backlash 

softly.
- The bigger value q4, the softer the mechanical gap closes, however, at the same time 

the dynamics of the drive are affected.
- Despite of a linear model of the two-mass system is used in the optimization 

algorithm, the set limits of the system state variable are not validated.
- The drive system works correctly for small as well as for big values of the reference 

speed.
- For the system with a relatively big value of q4 the variation of the backlash width 

has an insignificant effect on the performance of the system.
The future work will be devoted to experimental validation of the proposed MPC 

control structure. Also a system with a nonlinear model of the mechanical part of the 
drive in the MPC algorithm will be considered.
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