PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the Performance of Polypyrrole Coated Conductive Fabrics Prepared from Different Base Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, polypyrrole coated conductive fabrics were prepared using pyrrole as the monomer, p-toluene sulfonic acid as the doping agent and ammonium persulfate as the oxidant, adopting the simple method of situ polymerization of the liquid phase. Six types of conductive polypyrrole coated fabrics were prepared adopting polyester-cotton blended fabrics, nylon fabrics, wool fabrics, silk fabrics, basalt fabrics and aramid fabric respectively as base materials and using the same process conditions; its electrical conductivity was compared, and the distribution and resistance of the washing fastness of polypyrrole on the surface of those fabrics were studied. Results showed that under the same process conditions, the conductivity of polypyrrole coated terylene fabrics was the best, followed by the polypyrrole coated nylon fabrics and polypyrrole coated wool fabrics. Observed by electron microscope, the distribution of polypyrrole was more homogeneous on different base cloths. After washing, it was concluded that the combination fastness of polypyrrole with polyester-cotton, nylon and wool was better, while the combination fastness of polypyrrole with basalt and aramid was poor.
Rocznik
Strony
75--81
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Engineering research Center of Technical Textile, Ministry of Education, Donghua University, Shanghai 201620, P.R. China
  • School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
autor
  • School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
autor
  • College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao 266071, P.R. China
  • Loftex China LTD., Binzhou, 256651, P.R. China
autor
  • School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
autor
  • School of Foreign Languages, Tiangong University, Tianjin 300387, P.R. China
  • School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
Bibliografia
  • 1. Luo YY, Li YZ, Sharma P, et al. Learning human-environment interactions using conformal tactile textiles. Nat Electron, 2021; 4(4): 193-201.
  • 2. Li X, Fan YJ, Li HY, et al. Ultracomfortable hierarchical nano-network for highly sensitive pressure sensor. ACS Nano, 2020; 14(8): 9605-9612.
  • 3. Im TH, Lee JH, Wang HS, et al. Flashlightmaterial interaction for wearable and flexible electronics. Mater Today, 2021; 51: 525-551.
  • 4. Liman MLR, Islam MT and Hossain MM. Mapping the progress in flexible electrodes for wearable electronic textiles: materials, durability, and applications. Adv Electron Mater, 2022; 8(1): 2100578.
  • 5. Wang CY, Xia KL, Wang HM, et al. Advanced carbon for flexible and wearable electronics. ADV MATER, 2019; 31(9): e1801072.
  • 6. Guan XY, Wang X, Huang YH, et al. Smart textiles with janus wetting and wicking properties fabricated by graphene oxide coatings. Adv Mater Interfaces, 2021; 8(2): 2001427.
  • 7. Praveen S, Sim GS, Ho CW, et al. 3D-printed twisted yarn-type Li-ion battery towards smart fabrics. Energy Storage Mater, 2021; 41: 748-757.
  • 8. Liu YJ, Lu QQ, Wang Y, et al. A flexible sandwich structure carbon fiber cloth with resin coating composite improves electromagnetic wave absorption performance at low frequency. Polymers, 2022; 14(2): 233.
  • 9. Byondi FK and Chaung YC. Conductive fabric tag design optimization. SENSORS, 2021; 21(16): 5380.
  • 10. Li G, Li CL, Li GD, et al. Development of conductive hydrogels for fabricating flexible strain sensors. Small, 2022; 18(5): 2101518.
  • 11. Mamun MAA, Islam MT, Islam MM, et al. Scalable process to develop durable conductive cotton fabric. Adv Fiber Mater, 2020; 2(6): 291-301.
  • 12. Palanisamy S, Tunakova V and Militky J. Fiber-based structures for electromagnetic shielding-comparison of different materials and textile structures. Text Res J, 2018; 88(17-18): 1992-2012.
  • 13. Yang WD, Zhao QQ, Zhou Y, et al. Research progress of metal organic frameworks/carbon-based composites for microwave absorption. Adv Eng Mater, 2021; 24(4): 2100964.
  • 14. Yang YF, Liu YJ and Zhao XM. Preparation and characterization of an electromagnetic composite polypyrrole/polyethylene short filament geotextile. Text Res J, 2022; 92(7-8): 1333-1343.
  • 15. Zhou Y, Chen LY, Jian ML, et al. Recent research progress of ferrite multielement microwave absorbing composites. Adv Eng Mater, 2022; DOI: 10.1002/adem.202200526.
  • 16. Liu YJ, Yu YT and Du HF. The influence of two types of functional particles on the electromagnetic properties and mechanical properties of double-layer coated basalt fiber fabrics. Text Res J, 2022; 92(15-16): 2591-2604.
  • 17. Liu YJ and Yang YF. A study on the electromagnetic properties of graphite/bismuth/bismuth oxide-coated composites. Text Res J, 2022; 91(17-18): 1986-1998.
  • 18. Liu LX, Chen W, Zhang HB, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater, 2019; 29(44): 1905197.
  • 19. Liang CB, Ruan KP, Zhang YL, et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl Mater Inter, 2020; 12(15): 18023-18031.
  • 20. Lan CT, Guo M, Li CL, et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding. ACS Appl Mater Inter, 2020; 12(6): 7477-7485.
  • 21. Ma F, Ding C, Ling ZW, et al. Research progress on preparation and application of conductive fabrics. Mater R, 2020; 34(1): 1114-1125.
  • 22. Nimbekar AA and Deshmukh RR. Plasma-assisted grafting of PPy on polyester fabric as gas transducer. IEEE T Plasma Sci, 2021; 49(2): 604-614.
  • 23. Xia Q, Xia T and Wu X. PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Metals, 2022; 41(4): 1195-1201.
  • 24. Wang Y, Liu YJ and Zhao XM. Characterization of polyaniline/preoxidized fiber felt electromagnetic wave absorbing composites. Text Res J, 2021; 92(7-8): 1183-1191.
  • 25. Liu YJ and Wang Y. Preparation of polypyrrole/polyester-cotton composites and a study of their dielectric properties and conductivity. Text Res J, 2021; 91(9-10): 973-983.
  • 26. Liu YJ, Li WY, Kick C, et al. Preparation of polypyrrole/polyurethane foam composite material. Fibres Text East Eur, 2020; 28(3): 27-37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4d45ee3-3ca2-49b6-a95b-d513422adb0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.