PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal response of magnitude distribution to fluid injection rates in The Geysers geothermal field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of fluid injection rates on the magnitude distribution of the seismicity which occurred in the NW part of The Geysers geothermal site is studied here. A direct comparison between injection rate changes and b value response is attempted after appropriate selection of data subsets. Due to the relatively small sample (1121 events, corresponding to an average rate of ~ 0.45 events/day), we also aggregated seismic activity into two families corresponding to increasing and decreasing injection rates, respectively. The b values were calculated as a function of time lag related to the injection activity. In agreement with previous studies, we found a statistically significant direct relation between b values and injection rate changes, which occurred at a zero or very short time lag (from 0 to ~ 15 days). However, the b value changes are related to the slope (i.e., the second derivative of injection volume), instead of the absolute values of injection rates. The increasing injection rates correspond to b = 1.18 ± 0.06, whereas the decreasing injection rates correspond to b = 1.10 ± 0.05. The corresponding values estimated by the repeated medians technique are b = 1.97 ± 0.20 and b = 1.50 ± 0.13. Both differences are significant at 0.05 level.
Czasopismo
Rocznik
Strony
327--339
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Aki K (1965) Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239
  • 2. Amorèse D, Grasso J-R, Rydelek PA (2010) On varying b values with depth: results from computer-intensive tests for Southern California. Geophys J Int 180:347–360. https://doi.org/10.1111/j.1365-246X.2009.04414.x
  • 3. Bachmann C, Wiemer S, Woessner J, Hainzl S (2011) Statistical analysis of the induced basel 2006 earthquake sequence: introducing a probability-based monitoring approach for enhanced geothermal systems. Geophys J Int 186:793–807. https://doi.org/10.1111/j.1365-246X.2011.05068.x
  • 4. Bachmann C, Wiemer S, Goertz-Allmann BP, Woessner J (2012) Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys Res Lett 39:L09302. https://doi.org/10.1029/2012GL051480
  • 5. Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seismol Soc Am 73:831–851
  • 6. Davies R, Foulger G, Bindley A, Styles P (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Pet Geol 45:171–185
  • 7. Dempsey D, Suckale J, Huang Y (2016) Collective properties of injection0induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions. J Geophys Res Solid Earth. https://doi.org/10.1002/2015JB012551
  • 8. Edwards B, Douglas J (2014) Magnitude scaling of induced earthquakes. Geothermics 52:132–139
  • 9. El-Isa ZH, Eaton DW (2014) Spatiotemporal variations in the b value of earthquake magnitude-frequency distributions: classification and causes. Tectonophysics 615–616:1–11
  • 10. Evans KF, Zappone A, Kraft T, Deichmann N, Moia F (2012) A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41:30–54
  • 11. Goebel THW, Hauksson E, Aminzadeh F, Ampuero J-P (2015) An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California. J Geophys Res Solid Earth. https://doi.org/10.1002/2015JB011895
  • 12. Goebel THW, Hosseini SM, Cappa F, Hauksson E, Ampuero JP, Aminzadeh F, Saleeby JB (2016) Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophys Res Lett. https://doi.org/10.1002/2015GL066948
  • 13. Goertz-Allmann BP, Wiemer S (2013) Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment. Geophysics. https://doi.org/10.1190/GEO2012-0102.1
  • 14. Grigoli F, Cesca S, Priolo E, Rinaldi AP, Clinton JF, Stabile TA, Dost B, Fernandez MG, Wiemer S, Dahm T (2017) Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European per- spective. Rev Geophys 55:310–340. https://doi.org/10.1002/2016RG000542
  • 15. Hillis RR (2003) Pore pressure/stress coupling and its implications for rock failure. In: Subsurface sediment mobilization, 216, Geological Society of London, pp 359–368. Special Publication
  • 16. Huang Y, Beroza G (2015) Temporal variation in the magnitude-frequency distribution during the Guy-Greebrier earthquake sequence. Geophys Res Lett 42:6639–6646. https://doi.org/10.1002/2015GL065170
  • 17. IS EPOS (2017) Episode: The Geysers Prati 9 and Prati 29 cluster, https://tcs.ah-epos.eu/#episode:THE_GEYSERS_Prati_9_and_Prati_29_cluster, https://doi.org/10.25171/instgeoph_pas_isepos-2017-011
  • 18. Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654
  • 19. Kwiatek G, Martínez-Garzón P, Dresen G, Bohnhoff M, Sone H, Hartline C (2015) Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field. J Geophys Res Solid Earth 120:7085–7101. https://doi.org/10.1002/2015JB012362
  • 20. Langenbruch C, Zoback MD (2016) How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Sci Adv. https://doi.org/10.1126/sciadv.1601542
  • 21. Leptokaropoulos K, Staszek M, Cielesta S, Olszewska D, Urban P, Lizurek G (2017) Time dependent seismic hazard in Bobrek coal mine, Poland, assuming different magnitude distribution estimations. Acta Geophys. https://doi.org/10.1007/s11600-016-0002-9
  • 22. Leptokaropoulos K, Adamaki A, Roberts R, Gkarlaouni C, Paradisopoulou P (2018a) Impact of magnitude uncertainties on seismic catalog properties. Geophys J Int. https://doi.org/10.1093/gji/ggy023
  • 23. Leptokaropoulos K, Staszek M, Lasocki S, Martínez-Garzón P, Kwiatek G (2018b) Evolution of seismicity in relation to fluid injection in North-Western part of The Geysers geothermal field. Geophys J Int 212:1157–1166. https://doi.org/10.1093/gji/ggx481
  • 24. López-Comino JA, Cesca S, Jarosławski J, Montcoudiol N, Heimann S, Dahm T, Lasocki S, Gunning A, Capuano P, Ellsworth WL (2018) Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland. Sci Rep 5:2. https://doi.org/10.1038/s41598-018-26970-9
  • 25. Majer EL, Peterson JE (2007) The impact of injection on seismicity at The Geysers, California geothermal field. Int J Rock Mech Min Sci 44(8):1079–1090. https://doi.org/10.1016/j.ijrmms.2007.07.023
  • 26. Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal Systems. Geothermics 36:185–222
  • 27. Martínez-Garzón P, Kwiatek G, Sone H, Bohnhoff M, Dresen G, Hartline C (2014) Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: a case study from The Geysers geothermal field. J Geophys Res Solid Earth 119:8378–8396. https://doi.org/10.1002/2014JB011385
  • 28. Martínez-Garzón P, Kwiatek G, Bohnhoff M, Dresen G (2017) Volumetric components in the eq source related to fluid injection and stress state. Geophys Res Lett 44:800–809. https://doi.org/10.1002/2016GL071963
  • 29. Martínez-Garzón P, Zaliapin I, Ben-Zion Y, Kwiatek G, Bohnhoff M (2018) Comparative study of earthquake clustering in retlation to hydraulic activities at geothermal fileds in California. J Geophys Res. https://doi.org/10.1029/2017JB014972
  • 30. Maxwell SC, Jones M, Parker R, Miong S, Leaney S, Dorval D, D’Amico D, Logel J, Anderson E, Hammermaster K (2009) Fault activation during hydraulic fracturing. In: Proceedings of 79th SEG annual meeting, Huston, Texas, 1552–1556
  • 31. Oppenheimer DH (1986) Extensional tectonics at The Geysers Geothermal Area, California. J Geophys Res. https://doi.org/10.1029/JB091iB11p11463
  • 32. Rutqvist J, Dobson PF, Garcia J, Hartline C, Jeanne P, Oldenburg CM, Vasco DW, Walters M (2013) The Northwest Geysers EGS Demonstration Project, California: pre-stimulation modeling and interpretation of the stimulation. Math Geosci. https://doi.org/10.1007/s11004-013-9493-y
  • 33. Schoenball M, Müller T, Müller B, Heidbach O (2010) Fluid-induced microseismicity in pre-stressed rock masses. Geophys J Int 180:813–819. https://doi.org/10.1111/gji.2010.180.issue-2
  • 34. Scholz C (2015) On the stress dependence of the earthquake b value. Geophys Res Lett. https://doi.org/10.1002/2014GL062863
  • 35. Siegel AF (1982) Robust regression using repeated medians. Biometrika 69:242–244
  • 36. Smirnov MY (2003) Magnetotelluric data processing with a robust statistical procedure having a high breakdown point. Geophys J Int. https://doi.org/10.1046/j.1365-246X.2003.01733.x
  • 37. Staszek M, Orlecka-Sikora B, Leptokaropoulos K, Martínez-Garzón P, Kwiatek G (2017) Temporal static stress drop variations in relation to technological activity at The Geysers geothermal field, California. Geophys Res Lett. https://doi.org/10.1002/2017GL073929
  • 38. Stormo A, Lengliné O, Schmittbuhl J (2015) Mechanical origin of b value changes during stimulation of deep geothermal reservoirs. Geotherm Energy. https://doi.org/10.1186/s40517-014-0022-0
  • 39. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York, p 510
  • 40. Urban P, Lasocki S, Blascheck P, Do Nascimento AF, Giang NV, Kwiatek G (2016) Violations of Gutenberg–Richter in anthropogenic seismicity. Pure appl Geophys 173:1517–1537
  • 41. Utsu T (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure appl Geophys 155:509–535
  • 42. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90(4):859–869
  • 43. Wyss M (1972) Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astron Soc 31:341–359. https://doi.org/10.1111/j.1365-246X.1973.tb06506.x
  • 44. Zang A, Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D (2014) Analysis of induced seismicity in geothermal reservoirs: an overview. Geothermics 52:6–21
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4d42e96-e865-486e-90ee-eee52f96c4b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.