Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The classical log law for velocity profile is applied to engineering practice. Field observations indicate that the composition of the bed materials obviously influences the shape of vertical velocity distribution. To clearly understand the roughness effect, six types of materials were laid separately at various depths for the investigation of the effects of roughness elements on the vertical velocity distribution. A down-looking 3D acoustic Doppler velocimeter was used to measure the velocity profiles. The experimental results showed that the curve characteristics of velocity profiles are strongly dependent on the roughness scale and related flow parameters. If d/R, Fr, and Re are larger than 0.15, 0.47, and 60 000, respectively, the velocity distribution may resemble an S-shape profile. The inflexion position Z*/H for a given S-shape profile was empirically deduced as Z*/H = -0.4481d/R + 0.3225. Otherwise, the velocity profile agrees well with the logarithmic law. The findings of this study are useful in engineering practice (i.e., depth-averaged velocity and flow rate estimate).
Wydawca
Czasopismo
Rocznik
Tom
Strony
1685--1705
Opis fizyczny
Bibliogr. 64 poz., rys., wykr. tab.
Twórcy
autor
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
autor
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
autor
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
autor
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
Bibliografia
- [1] Aberle, J., K. Koll, and A. Dittrich (2008), Form induced stresses over rough gravelbeds, Acta Geophys. 56, 3, 584-600, DOI: 10.2478/s11600-008-0018-x.
- [2] Afzalimehr, H., J. Gallichand, J. Sui, and E. Bagheri (2011), Field investigation on friction factor in mountainous cobble-bed and boulder-bed rivers, Int. J.Sediment Res. 26, 2, 210-221, DOI: 10.1016/S1001-6279(11)60087-5.
- [3] Bathurst, J.C. (1985), Flow resistance estimation in mountain rivers, J. Hydraul.Eng. ASCE 111, 4, 625-643, DOI: 10.1061/(ASCE)0733-9429(1985)111:4 (625).
- [4] Bathurst, J.C. (1988), Velocity profile in high-gradient, boulder-bed channels. In: Proc. Int. Conference on Fluvial Hydraulics, IAHR, 30 May - 3 June 1988, Budapest, Hungary, 29-34.
- [5] Bathurst, J.C., D.B. Simons, and R.M. Li (1981), Resistance equation for large-scale roughness, J. Hydraul. Div. ASCE 107, 12, 1593-1613.
- [6] Bergeron, N.E., and A.D. Abrahams (1992), Estimating shear velocity and roughness length from velocity profiles, Water Resour. Res. 28, 8, 2155-2158, DOI: 10.1029/92WR00897.
- [7] Biron, P.M., S.N. Lane, A.G. Roy, K.F. Bradbrook, and K.S. Richards (1998), Sensitivity of bed shear stress estimated from vertical velocity profiles: The problem of sampling resolution, Earth Surf. Process. Land. 23, 2, 133-139, DOI: 10.1002/(SICI)1096-9837(199802)23:2<133::AID-ESP824>3.0.CO; 2-N.
- [8] Biron, P.M., C. Robson, M.F. Lapointe, and S.J. Gaskin (2004), Comparing different methods of bed shear stress estimates in simple and complex flow fields, Earth Surf. Process. Land. 29, 11, 1403-1415, DOI: 10.1002/esp.1111.
- [9] Bray, D.I. (1988), A review of flow resistance in gravel bed rivers. In: C. Colosimo and M. Veltri (eds.), Leggi morfologiche e loro verifica di campo, BIOS, 23-57.
- [10] Buffin-Bélanger, T., and A.G. Roy (2005), 1 min in the life of a river: Selecting the optimal record length for the measurement of turbulence in fluvial boundary layers, Geomorphology 68, 1-2, 77-94, DOI: 10.1016/j.geomorph.2004.09.032.
- [11] Byrd, T.C., D.J. Furbish, and J. Warburton (2000), Estimating depth-averaged velocities in rough channels, Earth Surf. Process. Land. 25, 2, 167-173, DOI: 10.1002/(SICI)1096-9837(200002)25:2 <167::AID-ESP66> 3.0.CO;2-G.
- [12] Cardoso, A.H., W.H. Graf, and G. Gust (1989), Uniform flow in a smooth open channel, J. Hydraul. Res. 27, 5, 603-616, DOI: 10.1080/00221688909499113.
- [13] Coceal, O., T.G. Thomas, I.P. Castro, and S.E. Belcher (2006), Mean flow and turbulence statistics over groups of urban-like cubical obstacles, Bound.-Lay. Meteorol. 121, 3, 491-519, DOI: 10.1007/s10546-006-9076-2.
- [14] Coles, D. (1956), The law of the wake in the turbulent boundary layer, J. Fluid Mech. 1, 2, 191-226, DOI: 10.1017/S0022112056000135.
- [15] Cooper, J.R., and S.J. Tait (2008), The spatial organisation of time-averaged streamwise velocity and its correlation with the surface topography of water- worked gravel beds, Acta Geophys. 56, 3, 614-642, DOI: 10.2478/ s11600-008-0023-0.
- [16] da Franca, M.J.R.P. (2005), A field study of turbulent flows in shallow gravel-bed rivers, Ph.D. Thesis, École Polytechnique Fédérale De Lausanne, Lausanne, Switzerland.
- [17] Dong, Z.N., and Y. Ding (1990), Turbulence characteristics in smooth open-channel flow, Sci. Chi. A 33, 2, 244-256.
- [18] Dong, Z.N., J.J. Wang, C.Z. Chen, and Z.H. Xia (1992), Hydraulic characteristics of open channel flows over rough beds, Sci. Chi. A 35, 8, 1007-1016.
- [19] Einstein, H.A., and E.A. El-Samni (1949), Hydrodynamic forces on a rough wall, Rev. Modern Phys. 21, 3, 520-524, DOI: 10.1103/RevModPhys.21.520.
- [20] Ferguson, R. (2007), Flow resistance equations for gravel- and boulder-bed streams, Water Resour. Res. 43, 5, W05427, DOI: 10.1029/2006WR005422.
- [21] Ferro, V. (2003a), ADV measurements of velocity distributions in a gravel-bed flume, Earth Surf. Process. Land. 28, 7, 707-722, DOI: 10.1002/esp.467.
- [22] Ferro, V. (2003b), Flow resistance in gravel-bed channels with large-scale roughness, Earth Surf. Process. Land. 28, 12, 1325-1339, DOI: 10.1002/ esp.589.
- [23] Ferro, V., and G. Baiamonte (1994), Flow velocity profiles in gravel-bed rivers, J. Hydraul. Eng. ASCE 120, 1, 60-80, DOI: 10.1061/(ASCE)0733-9429 (1994)120:1(60).
- [24] Hardy, R.J., J.L. Best, S.N. Lane, and P.E. Carbonneau (2009), Coherent flow structures in a depth-limited flow over a gravel surface: The role of near-bed turbulence and influence of Reynolds number, J. Geophys. Res. 114, F01003, DOI: 10.1029/2007JF000970.
- [25] He, J.J., and H.M. Wang (2004), Hydraulic characteristics of open channel flow over a rough bed, Hydro-Sci. Eng. 3, 3, 19-23 (in Chinese).
- [26] Jiménez, J. (2004), Turbulent flows over rough walls, Ann. Rev. Fluid Mech. 36, 173-196, DOI: 10.1146/annurev.fluid.36.050802.122103.
- [27] Kastner-Klein, P., and M.W. Rotach (2004), Mean flow and turbulence characteristics in an urban roughness sublayer, Bound.-Lay. Meteorol. 111, 1, 55-84, DOI: 10.1023/B:BOUN.0000010994.32240.b1.
- [28] Katul, G., P. Wiberg, J. Albertson, and G. Hornberger (2002), A mixing layer theory for flow resistance in shallow streams, Water Resour. Res. 38, 11, DOI: 10.1029/2001WR000817.
- [29] Kim, S.C., C.T. Fredrichs, J.P.Y. Maa, and L.D. Wright (2000), Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data, J. Hydraul. Eng. ASCE 126, 6, 399-406, DOI: 10.1061/(ASCE)0733-9429(2000)126:6(399).
- [30] Kirkgöz, M.S. (1989), Turbulent velocity profiles for smooth and rough open channel flow, J. Hydraul. Eng. ASCE 115, 11, 1543-1561, DOI: 10.1061/ (ASCE)0733-9429(1989)115:11 (1543).
- [31] Kirkgöz, M.S., and M. Ardiçlioğlu (1997), Velocity profiles of developing and developed open channel flow, J. Hydraul. Eng. ASCE 123, 12, 1099-1105, DOI: 10.1061/(ASCE)0733-9429(1997)123:12(1099).
- [32] Knopp, T., T. Alrutz, and D. Schwamborn (2006), A grid and flow adaptive wallfunction method for RANS turbulence modelling, J. Comput. Phys. 220, 1, 19-40, DOI: 10.1016/j.jcp.2006.05.003.
- [33] Kuelegan, G.H. (1938), Laws of turbulent flow in open channels, Paper RP1181, J. Res. Natl. Bur. Stand. 21, 701-741.
- [34] Lane, E.W., and E.J. Carlson (1953), Some factors affecting the stability of canals constructed in coarse granular materials. In: Proc. Minnesota International Hydraulics Convention, 1-4 September 1953, Minneapolis, USA, 37-48.
- [35] Legleiter, C.J., T.L. Phelps, and E.E. Wohl (2007), Geostatistical analysis of the effects of stage and roughness on reach-scale spatial patterns of velocity and turbulence intensity, Geomorphology 83, 3-4, 322-345, DOI: 10.1016/ j.geomorph.2006.02.022.
- [36] Lin, P., and C.W. Li (2002), A σ-coordinate three-dimensional numerical model for surface wave propagation, Int. J. Numer. Meth. Fluids 38, 11, 1045-1068, DOI: 10.1002/fld.258.
- [37] Liu, C.J., D.X. Li, and X.K. Wang (2005), Experimental study on friction velocity and velocity profile of open channel flow, J. Hydraul. Eng. 36, 8, 950-955 (in Chinese).
- [38] Marchand, J.P., R.D. Jarrett, and L.L. Jones (1984), Velocity profile, water-surface slope and bed-material size for selected streams in Colorado, Open-file Report 84-773, U.S. Geological Survey, Washington, USA.
- [39] Meyer-Peter, E., and R. Müller (1948), Formulas for bed-load transport. In: Proc. 2nd Congress of the International Association for Hydraulic Research, Stockholm, Sweden, 39-64.
- [40] Mignot, E., E. Barthélemy, and D. Hurther (2008), Turbulent kinetic energy budget in a gravel-bed channel flow, Acta Geophys. 56, 3, 601-613, DOI: 10.2478/ s11600-008-0020-3.
- [41] Mignot, E., D. Hurther, and E. Barthelemy (2009), On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow, J. Fluid Mech. 638, 423-452, DOI: 10.1017/ S0022112009990772.
- [42] Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys. 56, 3, 753-777, DOI: 10.2478/s11600-008-0017-y.
- [43] Nezu, I., and W. Rodi (1986), Open-channel flow measurements with a Laser Doppler Anemometer, J. Hydraul. Eng. ASCE 112, 5, 335-355, DOI: 10.1061/ (ASCE)0733-9429(1986)112:5(335).
- [44] Nikora, V.I., and D.G. Goring (1998), ADV measurements of turbulence: Can we improve their interpretation? J. Hydraul. Eng. ASCE 124, 6, 630-634, DOI: 10.1061/(ASCE)0733-9429(1998)124:6(630).
- [45] Nikora, V.I., I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters (2007), Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng. 133, 8, 873-883, DOI: 10.1061/(ASCE)0733-9429(2007)133:8(873).
- [46] Nowell, A.R.M., and M. Church (1979), Turbulent flow in a depth-limited boundary layer, J. Geophys. Res: 84, C8, 4816-4824, DOI: 10.1029/ JC084iC08p04816.
- [47] Papanicolaou, A.N., C.M. Kramer, A.G. Tsakiris, T. Stoesser, S. Bomminayuni, and Z. Chen (2012), Effects of a fully submerged boulder within a boulder array on the mean and turbulent flow fields: Implications to bedload transport, Acta Geophys. 60, 6, 1502-1546, DOI: 10.2478/s11600-012-0044-6.
- [48] Raupach, M.R. (1981), Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers, J. Fluid Mech. 108, 363-382, DOI: 10.1017/S0022112081002164.
- [49] Raupach, M.R., J.J. Finnigan, and Y. Brunet (1996), Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy, Bound.-Lay. Meteorol. 78, 3-4, 351-382, DOI: 10.1007/BF00120941.
- [50] Robert, A., A.G. Roy, and B. de Serres (1992), Changes in velocity profiles at roughness transitions in coarse grained channels, Sedimentology 39, 5, 725-735, DOI: 10.1111/j.1365-3091.1992.tb02149.x.
- [51] Rowiński, P.M., J. Aberle, and A. Mazurczyk (2005), Shear velocity estimation in hydraulic research, Acta Geophys. Pol. 53, 4, 567-583.
- [52] Roy, A.G., T. Buffin-Bélanger, H. Lamarre, and A.D. Kirkbride (2004), Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river, J. Fluid Mech. 500, 1-27, DOI: 10.1017/S0022112003006396.
- [53] Schindler, R.J., and A. Robert (2005), Flow and turbulence structure across the ripple- dune transition: an experiment under mobile bed conditions, Sedimentology 52, 3, 627-649, DOI: 10.1111/j.1365-3091.2005.00706.x. [
- [54] Schmeeckle, M.W., and J.M. Nelson (2003), Direct numerical simulation of bedload transport using a local, dynamic boundary condition, Sedimentology 50, 2, 279-301, DOI: 10.1046/j.1365-3091.2003.00555.x.
- [55] Shvidchenko, A.B., and G. Pender (2001), Macroturbulent structure of open-channel flow over gravel beds, Water Resour. Res. 37, 3, 709-719, DOI: 10.1029/ 2000WR900280.
- [56] Singh, A., F. Porté-Agel, and E. Foufoula-Georgiou (2010), On the influence of gravel bed dynamics on velocity power spectra, Water Resour. Res. 46, 4, W04509, DOI: 10.1029/2009WR008190.
- [57] Stoesser, T., and V.I. Nikora (2008), Flow structure over square bars at intermediate submergence: Large Eddy Simulation study of bar spacing effect, Acta Geophys. 56, 3, 876-893, DOI: 10.2478/s11600-008-0030-1.
- [58] Tachie, M.F., D.J. Bergstrom, and R. Balachandar (2000), Rough wall turbulent boundary layers in shallow open channel flow, J. Fluids Eng. 122, 3, 533-541, DOI: 10.1115/1.1287267.
- [59] Wang, D.C., X.K. Wang, and D.X. Li (1998), Mean velocity distributions and impact factor analysis of open channel flows, J. Sediment. Res. 3, 86-90 (in Chinese).
- [60] Wang, X.Y., X.K. Wang, X.N. Liu, W.Z. Lu, and Q.Y. Yang (2007), Calculation methods of shear velocity in open gravel channel, Adv. Sci. Technol. Water Res. 27, 5, 14-18 (in Chinese).
- [61] Wohl, E.E., and H. Ikeda (1998), The effect of roughness configuration on velocity profiles in an artificial channel, Earth Surf. Process. Land. 23, 2, 159-169, DOI: 10.1002/(SICI)1096-9837(199802)23:2<159::AID-ESP829>3.0.CO; 2-P.
- [62] Wohl, E.E., and D.M. Thompson (2000), Velocity characteristics along a small steppool channel, Earth Surf. Process. Land. 25, 4, 353-367, DOI: 10.1002/ (SICI)1096-9837(200004)25:4 <353::AID-ESP59>3.0.CO;2-5.
- [63] Yang, B., and S.F. Yang (2005), The experimental study on the velocity distribution over the high gradient gravel bed, J. Hydrodyn. 20, 2, 207-213 (in Chinese).
- [64] Zippe, H.J., and W.H. Graf (1983), Turbulent boundary-layer flow over permeable and non-permeable rough surface J. Hydrol. Res. 21, 1, 51-65, DOI: 10.1080/00221688309499450.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4d1f00a-11b2-4e67-a82f-d73a4d6220fe