PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery alternatives decision by using fuzzy based preference selection index method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Podejmowanie decyzji recycklingowych przy zastosowaniu metody wskaźnikowej wyboru preferencji
Języki publikacji
EN
Abstrakty
EN
Background: The electrical and electronics sector has become one of the rapidly developing and growing sectors, as a result of technological and economic developments. Rapid changes in consumer demands and needs have increased the use of electrical and electronic equipment and shortened product life cycle, resulting in an increase in equipment waste. Therefore, recovery alternatives for electrical and electronic equipment waste should be considered subject. The aim of this study is to evaluate the recovery alternatives of electrical and electronic wastes and to determine the best. Methods: Multi-criteria decision-making techniques used to select the best among multiple alternatives have many application areas. The selection of recovery alternatives based on criteria includes some fuzzy topics. For this reason, the fuzzy logic approach was used to evaluate the answers of the decision makers and the fuzzy numbers obtained were analyzed by PSI method and criterion weights were determined and alternatives were listed. Results: According to results of analysis, social responsibility and environmental awareness criteria have the highest values for selecting recovery alternatives. In addition, remanufacturing, regeneration and recycling take the first place among the alternatives. Conclusions: Recovery of electrical and electronics waste is an important subject in current conditions. Alternative methods vary from reuse to incineration, but correct choice of recovery techniques rely on multi criteria and decision should be made adhering to them.
PL
Wstęp: Przemysł elektryczny i elektroniczny to gałęzie przemysłu o dużej dynamice wzrostu i rozwoju, będącej wynikiem rozwoju technologicznego i ekonomicznego. Gwałtowne zmiany popytu i potrzeb konsumentów wpłynęły na wzrost zapotrzebowania na sprzęt elektroniczny oraz skróciły cykl życia produktu, co w efekcie doprowadziło do zwiększenia ilości odpadów sprzętowych. Dlatego też istotnie jest zajęcia się tematyką odzyskiwania części ze zużytego sprzętu elektrycznego i elektronicznego. Celem pracy jest ocenienie metod odzyskiwania elementów ze zużytych sprzętów oraz wybór najlepszej z tych metod. Metody: W wielu obszarach stosuje się techniki wielokryterialne podejmowania decyzji w celu dokonania wyborów pomiędzy różnymi alternatywami. Wybór metody odzyskiwania w oparciu o kryteria obejmuje zagadnienia modeli rozmytych. Z tego też powodu, zastosowano logikę rozmytą do oceny odpowiedzi osób decyzyjnych a uzyskanie liczby rozmyte zostały poddane metodzie PSI, w wyniku której uzyskano kryteria ważone jak i listę alternatyw. Wyniki: Na podstawie uzyskanych wyników stwierdzono, że kryteria odpowiedzialności i świadomości ekologicznej mają najwyższą wartość przy selekcji metod odzyskiwania. Dodatkowo, najczęściej wybieranymi metodami były: przerób, regeneracja oraz recykling. Wnioski: W istniejących obecnie uwarunkowaniach, odzyskiwanie elementów ze zużytego sprzętu elektrycznego i elektronicznego jest bardzo ważne. Metody alternatywne obejmują całą paletę od ponownego użycia do spalenia, jednakże prawidłowy wybór stosowanej techniki odzysku powinien opierać się na wielokryterialnym procesie decyzyjnym.
Czasopismo
Rocznik
Strony
171--181
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
  • Faculty of Economics and Administrative Sciences, Department of Production Management, Dokuz Eylul University, Faculty of Economics and Administrative Sciences, İzmir, Turkey
Bibliografia
  • 1. Agrawal S., Singh R.K., Murtaza Q., 2016. Disposition decisions in reverse logistics by using AHP-fuzzy TOPSIS approach, Journal of Modelling in Management, 11(4), 932- 948. http://doi.org/10.1108/JM2-12-2014-0091.
  • 2. Alcan P., Balin A., Başlıgil H., 2013. Fuzzy multicriteria selection among cogeneration systems: a real case application, Energy Build, 67, 624–634. http://doi.org/10.1016/j.enbuild.2013.08.048.
  • 3. Attri R., Grover S., 2015. Application of preference selection index method for decision making over the design stage of production system life cycle, Journal of King Saud University-Engineering Sciences, 27(2), 207-216. http://doi.org/10.1016/j.jksues.2013.06.003.
  • 4. Bilgin E., 2012. (original language) Tersine lojistik ağı tasarımı: Geri dönüşüm alanında bir uygulama. Yayınlanmamış Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü, İzmir. [translated in English] Reverse logistics network design: An application in the field of recycling. Unpublished Master's Thesis, Dokuz Eylül University Institute of Social Sciences, İzmir.
  • 5. Bouzon M., Govindan K., Rodriguez C.M.T., Campos L.M.S., 2016. Identification and analysis of reverse logistics barriers using fuzzy delphi method and AHP, Resources, Conservation and Recyling, 108, 182-197. http://doi.org/10.1016/j.resconrec.2015.05.021.
  • 6. Flylgansvaer B., Dahlstrom R., Nygaard A., 2018. Exploring the pursuit of sustainability in reverse supply chains for electronics, Journal of Cleaner Production, 189, 472-484. http://doi.org/10.1016/j.jclepro.2018.04.014
  • 7. Hu Y., Wu S., Cai L., 2009/ Fuzzy multi-criteria decision making TOPSIS for distribution center location selection. 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing, 2, 707-710, IEEE. http://doi.org/10.1109/NSWCTC.2009.102.
  • 8. Jindal A., Sangwan K.S., 2016. A fuzzy based decision support framework for product recovery process selection in reverse logistics, International Journal of Services and Operations Management, 25(4), 413-439. http://doi.org/10.1504/IJSOM.2016.080274.
  • 9. Liu H.C., 2016, FMEA using uncertainty theories and MCDM methods. In FMEA Using Uncertainty Theories and MCDM Methods, 13-27, Springer, Singapore. http://doi.org/10.1007/978-981-10-1466-6_2.
  • 10. Liu H.C., Liu L., Liu N., Mao L.X., 2012. Risk evaluation in failure mode and effects analysis with extended Vikor method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. http://doi.org/10.1016/j.eswa.2012.05.031.
  • 11. Mahapatara S.S., Sharma S.K., Parappagoudar M.B., 2013. A novel multi-criteria decision making appraoch for selection of reverse manufacturing alternatives, International Journal of Services and Operations Management, 15(2), 176-195. http://doi.org/10.1504/IJSOM.2013.053644.
  • 12. Maniya K., Bhatt M.G., 2010. A selection of material using a novel type decision-making method: preference selection index method, Materials and Design, 31, 1785-1789. http://doi.org/10.1016/j.matdes.2009.11.020
  • 13. Mufazzal S., Muzakkir S.M., 2018. A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals, Computers and Industrial Engineering, 119, 427-438. http://doi.org/10.1016/j.cie.2018.03.045.
  • 14. Noryani M.I., Sapuan S.M., Mastura M.T., 2018. Multi-criteria decision-making tools for material selection of natural fibre composites: a review, Journal of Mechanical Engineering and Sciences Malaysia, 12(1), 3330-3353 http://doi.org/10.15282/jmes.12.1.2018.5.0299.
  • 15. Prakash C., Barua M.K., 2016. An analysis of integrated robust hybrid model for third-party reverse logistics partner selection under fuzzy environment, Resources, Conservation and Recyling, 108, 63-81. http://doi.org/10.1016/j.resconrec.2015.12.011.
  • 16. Ravi V., Shankar R., Tiwari M.K., 2005. Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach, Computers and Industrial Engineering, 48, 327-356. http://doi.org/10.1016/j.cie.2005.01.017.
  • 17. Ravi V., Shankar R., 2012. Evaluating alternatives in reverse logistics for automobile organisations, International Journal of Logistics Systems and Management, 12(1), 32-51. http://doi.org/10.1504/IJLSM.2012.047057.
  • 18. Ravi V., Shankar R., Tiwari M.K., 2008. Selection of a reverse logistics project for end-of-life computers: ANP and goal programming, International Journal Of Production Research, 46(17), 4849-4870. http://doi.org/10.1080/00207540601115989
  • 19. Salehi, M., Tavakkoli-Moghaddam, R., 2008, Project selection by using a fuzzy TOPSIS technique. World Academy of Science, Engineering and Technology, 40, 85-90. http://doi.org/10.5281/zenodo.1327468.
  • 20. Samantra C., Sahu N.K., Datta S., Mahapatara S.S., 2013. Decision-making in selecting reverse logistics alternative using interval-valued fuzzy sets combined with VIKOR approach, International Journal of Services and Operations Management, 14(2), 175-196. http://doi.org/10.1504/IJSOM.2013.051828.
  • 21. Sanayei A., Mousavi S.F., Yazdankhah A., 2010. Group decision making process for supplier selection with vikor under fuzzy environment. Expert Systems with Applications, 37(1), 24-30. http://doi.org/10.1016/j.eswa.2009.04.063.
  • 22. Sawant V.B., Mohite S.S., Patil J., 2011. A decision-making framework using a preference selection index method for automated guided vehicle selection problem, International Conference on Technology Systems and Management (ICTSM), 12-16. http://doi.org/10.1007/978-3-642-20209-4_24.
  • 23. Sharma S.K., Mahapatra S.S., Parappagoudar M.B., 2016. Benchmarking of product recovery alternatives in reverse logistics, Benchmarking: An International Journal, 23(2), 406-424. http://doi.org/10.1108/BIJ-01-2014-0002.
  • 24. Sun Z., Cao H., Xiao Y., Sietsma J., Jin W., Agterhuis H., Yang Y., 2016. Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes. ACS Sustainable Chemistry and Engineering, 5(1), 21-40. http://doi.org/10.1021/acssuschemeng.6b00841.
  • 25. Wadhwa S., Madaan J., Chan F.T.S., 2009. Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection, Robotics and Computer-Integrated Manufacturing, 25(2), 460-469. http://doi.org/10.1016/j.rcim.2008.01.006.
  • 26. Wang Z., Ren J., Goodsite M.E., Xu G., 2018. Waste-to-energy, municipal solid waste treatment, and best available technology: comprehensive evaluation by an interval-valued fuzzy multi-criteria decision making method, Journal of Cleaner Production, 172, 887-899. http://doi.org/10.1016/j.jclepro.2017.10.184
  • 27. Yadav O.P., Singh N., Goel P.S., Itabashi-Campbell R., 2003. A framework for reliability prediction during product development process incorporating engineering judgements. Quality Engineering, 15(4), 649-662. http://doi.org/10.1081/QEN-120018396.
  • 28. Yu H., Solvang W.D., 2016. A stochastic programming approach with improved multi-criteria scenario-based solution method for sustainable reverse logistics design of waste electrical and electronic equipment (WEEE), Sustainability, 8(12), 1-28. http://doi.org/10.3390/su8121331.
  • 29. Zadeh L.A., 1975. The concept of linguistic variable and its application to approximate reasoning, Information Sciences, 8, 199-249. http://doi.org/10.1016/0020-0255(75)90036-5.
  • 30. Zhao Y., Cao Y., Li H., Wang S., Liu Y., Li Y., Zhang Y., 2018. Bullwhip effect mitigation of green supply chain optimization in electronics industry, Journal of Cleaner Production, 180, 888-912. http://doi.org/10.1016/j.jclepro.2018.01.134
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4d009ce-9c70-4dad-9f2e-cf4699749f6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.