PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability in chemical composition of waters in the Zoloushka gypsum cave (Ukraine-Moldova) as a consequence of anthropogenic degradation of a karst aquifer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Zoloushka Cave, with passages >90 km long and a volume of ~0.65 million m3, is among the largest gypsum caves in the world. The cave was opened in the course of gypsum excavation in a quarry in the village of Criva (Moldova) located just near the border with Ukraine. During the quarry exploitation, with the accompanying pumping of water, the groundwater table was lowered to the bottom part of the gypsum layer. As a result of the pumping, the karst aquifer within the cave labyrinth was fragmented into separate underground reservoirs controlled by the morphology of the karst system and its content of clay deposits. Currently, there are several dozen lakes in the cave with a varied hydrodynamic regime (relict lakes, lakes with direct and indirect hydraulic connection with the aquifer). Research was carried out in February 2020 to determine the degree of, and reasons for, the hydrogeochemical diversity of 10 selected lakes of various hydrodynamic types present in the cave. The degree of variability of the hydrogeochemical parameters of these lakes was found to depend on a number of factors, mainly: the hydrodynamic type of the cave lake resulting from the degree of its hydraulic connection with the aquifer; the geochemical environment of the lake; and anthropogenic influence. The autonomizing role of these factors is the modification (within individual lakes) of the hydrogeochemical context of the transit waters flowing through the cave system to the quarry.
Rocznik
Strony
art. no. 41
Opis fizyczny
Bibliogr. 38 poz., fot., rys., wykr.
Twórcy
  • University of Warsaw, Faculty of Geography and Regional Studies, Krakowskie Przedmieście 30, 00-927, Warsaw, Poland
  • University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Będzińska 60, 41-200, Sosnowiec, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Adabanija, M.A., Oladunjoye, M.A., 2014. Geoenvironmental assessment of abandoned mines and quarries in south-western Nigeria. Journal of Geochemical Exploration, 145: 148-168.
  • 2. Andrejchuk, V.N., Klimchouk, A.B., 2001. Geomicrobiology and redox geochemistry of the Karstified Miocene gypsum aquifer, Western Ukraine: the study from Zoloushka Cave. Geomicrobiology, 18: 275-295.
  • 3. Andrejczuk, V.N., Jóźwiak, K., Różkowski, J., 2009. Chemistry formation of the water in the Zoloushka gypsum cave (Ukraine, Moldova) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 436: 9-16.
  • 4. Andreychouk, V.N., 1999. Obrazovaniye provalov nad gipsovymi peshcherami-labirintami i otsenka ustoychivosti zakarstovannych territoriy (in Russian). Prut, Chernivtsy.
  • 5. Andreychouk, V.N., 2007. Zoloushka Cave (in Russian). Faculty of Earth Sciences, Silesian University and Ukrainian Institute of Speleology and Karstology, Ukrainian Academy of Sciences. Sosnowiec-Simferopol.
  • 6. Andreychouk, V.N., Klimchouk, A.B., 2017. Zoloushka Cave (Ukraine-Moldova) - a prime example of hypogene artesian speleogenesis in gypsum. In: Hypogene Karst Regions and Caves of the World (eds. A.B. Klimchouk, A.N. Palmer, J. de Waele, A.S. Auler and P. Audra): 387-406. Springer.
  • 7. Andreychouk, V.N., Różkowski, J., Jóźwiak, K., 2009. Chemizm wód podziemnych obszaru krasu gipsowego międzyrzecza Prut - Dniestr (Ukraina, Mołdowa) (in Polish). In: Materials of the 12th conference “Hydrogeochemia'09". SAH, Comenius University in Bratislava, 18-19.06.2009, Bratislava: 49-55.
  • 8. Andreychouk, V.N., Teleshman, I., Kouprich, P., 2011. Prostranstvenno-dinamicheskiye osobennosti raspredeleniya CO2 v vozdukhe peshchery Zolushka (in Russian). Speleologia i Karstologia, 7: 15-25.
  • 9. Banzato, C., Fiorucci, A., Gianotti, A., de Waele, J., Bartolomeo, V., 2010. Risk of groundwater inrush in subterranean gypsum quarries: the case study of Moncalvo near Asti (North Italy). EGU General Assembly 2010, held 2-7 May, 2010 in Vienna, Austria, 2010EGUGA.12.9272B.
  • 10. Barhoum, S., Valdčs, D., Guérin, R., Marlin, C., Vitale, Q., Benmamar, J., Gombert, P., 2014. Spatial heterogeneity of high-resolution Chalk groundwater geochemistry - underground quarry at Saint Martin-le-Noeud, France. Journal of Hydrology, Part A, 519: 756-768.
  • 11. Barthelemy, J., Carletti, T., Collier, L., Hallet, V., Moriame, M., Sartenaer, A., 2016. Interaction prediction between groundwater and quarry extension using discrete choice models and artificial neural networks. Environmental Earth Sciences, 75: 1467.
  • 12. Brunetti, E., Jones, J.P., Petitta, M., Rudolph, D.I., 2013. Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeology Journal, 21: 401-423.
  • 13. Caselle, C., Bonetto, S., Comina, C., Stocco, S., 2020. GPR surveys for the prevention of karst risk in underground gypsum quarries. Tunnelling and Underground Space Technology, 95. doi: 10.1016/j.tust.2019.103137.
  • 14. Chambers, J.E., Meldrum, P.I., Wilkinson, P.B., Ward, W., Jackson, C., Matthews, B., Joel, P., Kuras, O., Bai, L., Uhlemann, S., Gunn, D., 2015. Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193: 412-420.
  • 15. Darling, W.G., Gooddy, D.C., Riches, J., Wallis, I., 2010. Using environmental tracers to assess the extent of river-groundwater interaction in a quarried area of the English Chalk. Applied Geochemistry, 25: 923-932.
  • 16. Dubois, C., Goderniaux, P., Deceuster, J., Poulain, A., Kaufmann, O., 2019. Hydrogeological characterization and modelling of weathered karst aquifers. Applicability to dewatering operations in limestone quarries. Environmental Earth Sciences, 78: 99.
  • 17. Eang, K.E., Igarashi, T., Fujinaga, R., Kondo, M., Tabelin, C.B., 2018. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes. Laboratory of Groundwater and Mass Transport. Environmental Monitoring and Assessment, 190: 1-15.
  • 18. Gorbunova, K.A., Maximovich, N.G., Andreychouk, V.N., 1990. Technogenic impact on geological environment of the Perm area. Mining Institute of Ural Branch of Soviet Academy of Science, Perm.
  • 19. Jóźwiak, K., Andreychouk, V.N., Różkowski, J., 2007. Procesy rozpuszczania skał gipsowych w zlewni Czarnego Potoku (Bukowina, Ukraina Zachodnia) w świetle modelowania hydrogeochemicznego (in Polish). In: Materials of the 11th conference “Hydrogeochemia'07". Comenius University in Bratislava, 7-8.06.2007, Bratislava: 24-29.
  • 20. Jóźwiak, K., Andrejczuk V.N., Różkowski, J., 2012. Results of geochemical modelling of grundwater in the gypsiferous Triassic series of the Deshat Korabi Mountains (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 451: 107-113.
  • 21. Margutti, R., 2009. The gypsum mining area in the “Vena del Gesso” biodiversity landscapes (Monte Tondo quarry, Emilia-Romagna Region): quarrying and old mine tunnels environment impact on natural karsts systems and groundwater quality. Scientifica Acta, 3: 31-37.
  • 22. Meena, Ch., Haritash, A.K., 2018. Hydrogeochemical characterization and suitability appraisal of groundwater around stone quarries in Mahendragarh, India. Project: Water Quality Monitoring. Environmental Earth Sciences, 77: 252-280.
  • 23. Misra, A.K., 2013. Influence of stone quarries on groundwater quality and health in Fatehpur Sikri, India. International Journal of Sustainable Built Environment, 2: 73-88.
  • 24. Mota Poveda, J.F., Sola, A.J., Jiménez-Sánchez, M.L., Perez-Garcia, F.J., Merlo, M.E., 2004. Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. September 2004. Biodiversity and Conservation, 13: 1797-1808.
  • 25. Oggeri, C., Fenoglio, T.M., Godio, A., Vinai, R., 2019. Overburden management in open pits: options and limits in large limestone quarries. International Journal of Mining Science and Technology, 29: 217-228.
  • 26. Peryt, T.M., 1996. Sedimentology of Badenian (middle Miocene) gypsum in eastern Galicia, Podolia and Bukovina (West Ukraine). Sedimentology, 43: 571-588.
  • 27. Peryt, T.M., Peryt, D., 1994. Badenian (Middle Miocene) Ratyn Limestone in western Ukraine and northern Moldavia: microfacies, calcareous nannoplankton and isotope geochemistry. Bulletin of the Polish Academy of Sciences, Earth Sciences, 42: 127-136.
  • 28. Peryt, T.M., Durakiewicz, T., Peryt, D., Poberezhskyy, A., 2012. Carbon and oxygen isotopic composition of the Middle Miocene Badenian gypsum-associated limestones of West Ukraine. Geologica Acta, 10: 319-332.
  • 29. Pitz, C., Mahy, G., Vermeulen, C., Marlet, C., Séleck, M., 2015. Developing biodiversity indicators on a stakeholders' opinions basis: the gypsum industry Key Performance Indicators framework. Environmental Science and Pollution Research, 23: 13661-13671.
  • 30. Poulain, A., Dreuzy, J-R., Goderniaux, P., 2018. Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries. Journal of Hydrology, 559: 1002-1012.
  • 31. Pulido-Bosch, A., Calaforra, J.M., Pulido-Leboeuf, P., Torres-Garcia, S., 2004. Impact of quarrying gypsum in a semidesert karstic area (Sorbas, SE Spain). Environmental Geology, 46: 583-590.
  • 32. Różkowski, J., Jóźwiak, K., Andrejczuk, W., 2011. Chemistry of groundwater in gypsiferous Badenian series in the northern part of the Carpathian Foredeep (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 445: 573-582.
  • 33. Różkowski, J., Rahmonov, O., Szymczyk, A., 2020. Environmental transformations in the area of the Kuźnica Warężyńska Sand Mine, Southern Poland. Land, 9: 1-16.
  • 34. Sadeghiamirshahidi, M., Vitton, S.J., 2019. Laboratory study of gypsum dissolution rates for an abandoned underground mine. Rock Mechanics and Rock Engineering, 52: 2053-2066.
  • 35. Solovey, T.B., Jóźwiak, K., 2008. Zastosowanie modelowania geochemicznego do analizy zmian składu chemicznego wód w krajobrazie krasowym (na przykładzie krasu gipsowego w dolinie Czarnego Potoku - południowo-zachodnia Ukraina) (in Polish). In: Materials of the International Scientific Conference “Landscape Research Methodology”. Krynica, 3-5.03.2008: 85-89.
  • 36. Sprynskyy, M., Lebedynets, M., Sadurski, A., 2008. Gypsum karst intensification as a consequence of sulphur mining activity (Jaziv field, Western Ukraine). Environmental Geology, 57: 173-181.
  • 37. Van der Gaag, P., 2008. Mining water from gypsum. International Journal of Global Environmental Issues, 8: 3.
  • 38. Yilmaz, I., 2001. Gypsum/anhydrite: some engineering problems. Bulletin of Engineering Geology and the Environment, 60: 227-230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4c77f5e-ee07-447c-abb4-f6e2300da099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.