PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical and experimental investigation on the free vibration of a floating composite sandwich plate having viscoelastic core

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the free vibration analytical solution of a composite sandwich plate consisting of woven carbon laminated faces and a viscoelastic foam core. In addition to the dry condition, a case of floating on bounded water is considered for the sandwich plate not only in analytical work but also in verification experiments. The equations of motion for the first-order shear-deformation plate in contact with the fluid are derived by using Hamilton's principle, and analytically solved using Navier's procedure. Bounded water boundary conditions and velocity potential function are used to describe the fluid motion. The viscoelastic properties of a marine PVC foam core are extracted from dynamic mechanical analysis. Frequency response function (FRF) method is applied in modal testing for measuring the natural frequencies of the dry and wet sandwich plates. Experimental results demonstrate the validity of the analytical results. The effects of the foam core behavior, core thickness, plate dimension ratio, and the fluid density on the natural frequencies are examined and discussed. The decrease of the fundamental mode natural frequency with the presence of the viscoelastic foam core is more prominent for the dry sandwich plate with respect to the wet one already damped by water.
Rocznik
Strony
1241--1258
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Maritime Engineering, Amirkabir University of Technology, Hafez Ave. 424, Tehran, Iran
autor
  • Department of Maritime Engineering, Amirkabir University of Technology, Hafez Ave. 424, Tehran, Iran
Bibliografia
  • [1] P. Cupiał, J. Nizioł, Vibration and damping analysis of a threelayered composite plate with a viscoelastic mid-layer, J. Sound Vib. 183 (1995) 99–114.
  • [2] T. Kant, K. Swaminathan, Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos. Struct. 53 (2001) 73–85.
  • [3] H.-J. Wang, L.-W. Chen, Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer, Compos. Struct. 58 (2002) 563–570.
  • [4] T.-W. Kim, J.-H. Kim, Nonlinear vibration of viscoelastic laminated composite plates, Int. J. Solids Struct. 39 (2002) 2857–2870.
  • [5] Z.-D. Xu, H.-T. Zhao, A.-Q. Li, Optimal analysis and experimental study on structures with viscoelastic dampers, J. Sound Vib. 273 (2004) 607–618.
  • [6] Y.-R. Chen, L.-W. Chen, Vibration and stability of rotating polar orthotropic sandwich annular plates with a viscoelastic core layer, Compos. Struct. 78 (2007) 45–57.
  • [7] Ö. Civalek, Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method, Finite Elem. Anal. Des. 44 (2008) 725–731.
  • [8] V. Birman, C.W. Bert, On the choice of shear correction factor in sandwich structures, J. Sandwich Struct. Mater. 4 (2002) 83–95.
  • [9] A. Bhar, S. Phoenix, S. Satsangi, Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: a comparative perspective, Compos. Struct. 92 (2010) 312–321.
  • [10] H. Asadi, M. Souri, Q. Wang, A numerical study on flow induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments, Compos. Struct. 171 (2017) 113–125.
  • [11] M.M. Keleshteri, H. Asadi, Q. Wang, Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation, Thin-Walled Struct. 120 (2017) 203–214.
  • [12] A. Assie, M. Eltaher, F. Mahmoud, Behavior of a viscoelastic composite plates under transient load, J. Mech. Sci. Technol. 25 (2011) 1129–1140.
  • [13] S. Mahmoudkhani, H. Haddadpour, H.M. Navazi, Free and forced random vibration analysis of sandwich plates with thick viscoelastic cores, J. Vib. Control 19 (2013) 2223–2240.
  • [14] M.R. Kramer, Z. Liu, Y.L. Young, Free vibration of cantilevered composite plates in air and in water, Compos. Struct. 95 (2013) 254–263.
  • [15] J. Yang, J. Xiong, L. Ma, B. Wang, G. Zhang, L. Wu, Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers, Compos. Struct. 106 (2013) 570–580.
  • [16] K. Khorshid, S. Farhadi, Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid, Compos. Struct. 104 (2013) 176–186.
  • [17] M. Mehri, H. Asadi, Q. Wang, On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow, Compos. Struct. 153 (2016) 938–951.
  • [18] M.S. Kiasat, H.A. Zamani, M.M. Aghdam, On the transient response of viscoelastic beams and plates on viscoelastic medium, Int. J. Mech. Sci. 83 (2014) 133–145.
  • [19] M. Avcar, Effects of rotary inertia shear deformation and nonhomogeneity on frequencies of beam, Struct. Eng. Mech. 55 (4) (2015) 871–884.
  • [20] C. Yang, G. Jin, X. Ye, Z. Liu, A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials, Int. J. Mech. Sci. 106 (2016) 1–18.
  • [21] V. Kahya, M. Turan, Finite element model for vibration and buckling of functionally graded beams based on the firstorder shear deformation theory, Compos. B: Eng. 109 (2017) 108–115.
  • [22] M. Rezaee Sangtabi, M.S. Kiasat, Long-term viscoelastic properties of an adhesive and molding compound, characterization and modeling, Polymer 116 (2017) 204–217.
  • [23] D.S. Cho, B.H. Kim, J.-H. Kim, N. Vladimir, T.M. Choi, Frequency response of rectangular plate structures in contact with fluid subjected to harmonic point excitation force, Thin-Walled Struct. 95 (2015) 276–286.
  • [24] K.R. Pradeep, B.N. Rao, S.M. Srinivasan, K. Balasubramaniam, S. Ahamed, Influence of core compressibility, flexibility and transverse shear effects on the response of sandwich structures, Am. J. Mech. Ind. Eng. 2 (2) (2017) 81–91.
  • [25] J. Zhang, G. Xu, F. Liu, J. Lian, X. Yan, Experimental investigation on the flow induced vibration of an equilateral triangle prism in water, Appl. Ocean Res. 61 (2016) 92–100.
  • [26] A.S. Sayyad, Y.M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results, Compos. Struct. 129 (2015) 177–201.
  • [27] M.S. Kiasat, M. Rezaee Sangtabi, Effects of fiber bundle size and weave density on stiffness degradation and final failure of fabric laminates, Compos. Sci. Technol. 111 (2015) 23–31.
  • [28] J.D. Ferry, Viscoelastic Properties of Polymers, John Wiley &Sons, 1980.
  • [29] M.S. Kiasat, G. Zhang, L. Ernst, G. Wisse, Creep behavior of a molding compound and its effect on packaging process stresses, in: Electronic Components and Technology Conf, 2001, 931–938.
  • [30] C. Cooper, R. Young, M. Halsall, Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy, Compos. A: Appl. Sci. Manuf. 32 (2001) 401–411.
  • [31] K. Torabi, M. Shariati-Nia, M. Heidari-Rarani, Experimental and theoretical investigation on transverse vibration of delaminated cross-ply composite beams, Int. J. Mech. Sci. 115 (2016) 1–11.
  • [32] T. Brugo, R. Panciroli, G. Minak, Study of the dynamic behavior of plates immersed in a fluid, in: Experimental Mechanics Conf., 2012.
  • [33] S. Hosseini Hashemi, M. Karimi, H. Rokni, Natural frequencies of rectangular Mindlin plates coupled with stationary fluid, Appl. Math. Model. 36 (2012) 764–778.
  • [34] S.K. Lee, M.W. Kim, C.J. Park, M.J. Chol, G. Kim, J.-M. Cho, G. Kim, J.-M. Cho, C.-H. Choi, Effect of fiber orientation on acoustic and vibration response of a carbon fiber/epoxycomposite plate: Natural vibration mode and sound radiation, Int. J. Mech. Sci. 117 (2016) 162–173.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4c49c7a-65f1-410f-b1d9-02c0342fe9b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.