PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultimate compressive strength assessment of uncleaned and cleaned corroded plates with locked crack

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presented here investigates the structural response of cleaned corroded plates, subjected to compressive load in the presence of a locked crack, where the change of mechanical properties as a result of corrosion development and the cleaning process is also accounted for. A Finite Element model for assessing the compressive strength, considering geometric and material nonlinearities, is developed, and the analysed plates are compared with the available experimental data. An experimental design plan is generated using the Design of Experiments techniques, which quantifies the influence of the governing variables and their interactions with respect to the plate’s ultimate compressive strength. With a limited number of observations, the most significant effects are identified. The corrosion degradation is revealed to be the most crucial effect leading to an effective strength reduction. It was found that, in the case of a corroded plate with a locked crack subjected to a compressive load, the most severe case is when the crack is transversely oriented. The strength reduction is slightly lower than when the corrosion degradation and the presence of a crack are considered to be a simple summation of these two effects but acting separately. The outcome of the analysis is the development of several empirical formulations that allow a fast estimation of the ultimate strength of a corroded plate, subjected to compressive load in the presence of a locked crack, accounting for different cleaning.
Słowa kluczowe
Rocznik
Tom
Strony
117--127
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
Bibliografia
  • 1. K. Woloszyk, M. Kahsin, and Y. Garbatov, “Numerical assessment of ultimate strength of severe corroded stiffened plates,” Eng. Struct., vol. 168, pp. 346–354, Aug. 2018, doi: 10.1016/j.engstruct.2018.04.085.
  • 2. S. Saad-Eldeen, Y. Garbatov, and C. Guedes Soares, “Ultimate strength analysis of highly damaged plates,” Mar. Struct., vol. 45, pp. 63–85, Jan. 2016, doi: 10.1016/j. marstruc.2015.10.006.
  • 3. K. Woloszyk, Y. Garbatov, J. Kowalski, and L. Samson, “Experimental and numerical investigations of ultimate strength of imperfect stiffened plates of different slenderness,” Polish Marit. Res., vol. 27, no. 4, pp. 120–129, 2020.
  • 4. H. Ölmez and E. Bayraktarkatal, “Maximum Load Carrying Capacity Estimation of The Ship and Offshore Structures by Progressive Collapse Approach,” Polish Marit. Res., vol. 23, no. 3, pp. 28–38, Sep. 2016, doi: 10.1515/pomr-2016-0029.
  • 5. S. Saad-Eldeen, Y. Garbatov, and C. Guedes Soares, “Ultimate strength assessment of corroded box girders,” Ocean Eng., vol. 58, pp. 35–47, Jan. 2013, doi: 10.1016/j. oceaneng.2012.09.019.
  • 6. S. Saad-Eldeen, Y. Garbatov, and C. Guedes Soares, “Effect of corrosion degradation on ultimate strength of steel box girders,” Corros. Eng. Sci. Technol., vol. 47, no. 4, pp. 272–283, Jun. 2012, doi: 10.1179/1743278212Y.0000000005.
  • 7. X. H. Shi, J. Zhang, and C. Guedes Soares, “Numerical assessment of experiments on the ultimate strength of stiffened panels with pitting corrosion under compression,” Thin-Walled Struct., vol. 133, pp. 52–70, Dec. 2018, doi: 10.1016/j.tws.2018.09.029.
  • 8. Y. Garbatov, M. Tekgoz, and C. Guedes Soares, “Experimental and numerical strength assessment of stiffened plates subjected to severe non-uniform corrosion degradation and compressive load,” Ships Offshore Struct., vol. 12, no. 4, pp. 461–473, May 2017, doi: 10.1080/17445302.2016.1173807.
  • 9. J. E. Silva, Y. Garbatov, and C. Guedes Soares, “Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation,” Eng. Struct., vol. 52, pp. 295–305, Jul. 2013, doi: 10.1016/j. engstruct.2013.02.013.
  • 10. Y. Wang, S. Xu, and A. Li, “Flexural performance evaluation of corroded steel beams based on 3D corrosion morphology,” Struct. Infrastruct. Eng., pp. 1–16, Jan. 2020, doi: 10.1080/15732479.2020.1713169.
  • 11. Y. Garbatov, C. Guedes Soares, J. Parunov, and J. Kodvanj, “Tensile strength assessment of corroded small scale specimens,” Corros. Sci., vol. 85, pp. 296–303, Aug. 2014, doi: 10.1016/j.corsci.2014.04.031.
  • 12. Y. Garbatov, J. Parunov, J. Kodvanj, S. Saad-Eldeen, and C. Guedes Soares, “Experimental assessment of tensile strength of corroded steel specimens subjected to sandblast and sandpaper cleaning,” Mar. Struct., vol. 49, pp. 18–30, Sep. 2016, doi: 10.1016/J.MARSTRUC.2016.05.009.
  • 13. Y. Garbatov, S. Saad-Eldeen, C. Guedes Soares, J. Parunov, and J. Kodvanj, “Tensile test analysis of corroded cleaned aged steel specimens,” Corros. Eng. Sci. Technol., pp. 1–9, Nov. 2018, doi: 10.1080/1478422X.2018.1548098.
  • 14. K. Woloszyk and Y. Garbatov, “Random field modelling of mechanical behaviour of corroded thin steel plate specimens,” Eng. Struct., vol. 212, p. 110544, Jun. 2020, doi: 10.1016/j.engstruct.2020.110544.
  • 15. B. Nie, S. Xu, J. Yu, and H. Zhang, “Experimental investigation of mechanical properties of corroded coldformed steels,” J. Constr. Steel Res., vol. 162, p. 105706, Nov. 2019, doi: 10.1016/j.jcsr.2019.105706.
  • 16. Y. Wang, S. Xu, H. Wang, and A. Li, “Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology,” Constr. Build. Mater., vol. 152, pp. 777–793, Oct. 2017, doi: 10.1016/j. conbuildmat.2017.07.035.
  • 17. S. Xu, Z. Zhang, and G. Qin, “Study on the seismic performance of corroded H-shaped steel columns,” Eng. Struct., vol. 191, pp. 39–61, Jul. 2019, doi: 10.1016/j. engstruct.2019.04.037.
  • 18. T. Moan, O. T. Va˚rdal, N.-C. Hellevig, and K. Skjoldli, “Initial Crack Depth and POD Values Inferred From In-Service Observations of Cracks in North Sea Jackets,” J. Offshore Mech. Arct. Eng., vol. 122, no. 3, pp. 157–162, Aug. 2000, doi: 10.1115/1.1286676.
  • 19. J. K. Paik, G. Wang, A. K. Thayamballi, J. M. Lee, Y. Il Park, and J. Parunov, “Time-dependent risk assessment of aging ships accounting for general / pit corrosion, fatigue cracking and local denting damage,” Trans. - Soc. Nav. Archit. Mar. Eng., vol. 111, pp. 159–98, 2003.
  • 20. Y. A. Roy, B. P. Shastry, and G. V. Rao, “Stability of square plates with through transverse cracks,” Comput. Struct., vol. 36, no. 2, pp. 387–388, 1990, doi: 10.1016/0045-7949(90)90137-Q.
  • 21. D. Shaw and Y. H. Huang, “Buckling behavior of a central cracked thin plate under tension,” Eng. Fract. Mech., vol. 35, no. 6, pp. 1019–1027, Jan. 1990, doi: 10.1016/0013-7944(90)90129-5.
  • 22. J. K. Paik, Y. V. Satish Kumar, and J. M. Lee, “Ultimate strength of cracked plate elements under axial compression or tension,” Thin-Walled Struct., vol. 43, no. 2, pp. 237–272, Feb. 2005, doi: 10.1016/j.tws.2004.07.010.
  • 23. A. Babazadeh and M. R. Khedmati, “Ultimate strength of cracked ship structural elements and systems: A review,” Eng. Fail. Anal., vol. 89, pp. 242–257, Jul. 2018, doi: 10.1016/j. engfailanal.2018.03.003.
  • 24. R. Seifi and N. Khoda-yari, “Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading,” Thin-Walled Struct., vol. 49, no. 12, pp. 1504–1516, Dec. 2011, doi: 10.1016/j. tws.2011.07.010.
  • 25. X. H. Shi, J. Zhang, and C. Guedes Soares, “Experimental study on collapse of cracked stiffened plate with initial imperfections under compression,” Thin-Walled Struct., vol. 114, pp. 39–51, May 2017, doi: 10.1016/j.tws.2016.12.028.
  • 26. A. Rahbar-Ranji and A. Zarookian, “Ultimate strength of stiffened plates with a transverse crack under uniaxial compression,” Ships Offshore Struct., vol. 10, no. 4, pp. 416–425, Jul. 2015, doi: 10.1080/17445302.2014.942078.
  • 27. C. Cui, P. Yang, C. Li, and T. Xia, “Ultimate strength characteristics of cracked stiffened plates subjected to uniaxial compression,” Thin-Walled Struct., vol. 113, pp. 27–38, Apr. 2017, doi: 10.1016/j.tws.2017.01.003.
  • 28. S. Saad-Eldeen, Y. Garbatov, and C. Soares, “Emergency repair of a single hull structure with locked cracks,” in Maritime Technology and Engineering III, CRC Press, 2016, pp. 521–529.
  • 29. S. Saad-Eldeen, Y. Garbatov, and C. G. Soares, “Strength enhancement of cracked swash bulkheads of jack-up spudcan,” in Progress in the Analysis and Design of Marine Structures, CRC Press, 2017, pp. 763–770.
  • 30. A. Babazadeh and M. R. Khedmati, “Empirical formulations for estimation of ultimate strength of cracked continuous unstiffened plates used in ship structure under in-plane longitudinal compression,” Eng. Fail. Anal., vol. 100, pp. 470–484, Jun. 2019, doi: 10.1016/j.engfailanal.2019.02.051.
  • 31. K. Woloszyk and Y. Garbatov, “Analysis of Ultimate Compressive Strength of Cracked Plates with the Use of DoE Techniques,” Polish Marit. Res., vol. 27, no. 3, pp. 109–120, Sep. 2020, doi: 10.2478/pomr-2020-0052.
  • 32. L. Feng, D. Li, H. Shi, Q. Zhang, and S. Wang, “A study on the ultimate strength of ship plate with coupled corrosion and crack damage,” Ocean Eng., vol. 200, p. 106950, Mar. 2020, doi: 10.1016/j.oceaneng.2020.106950.
  • 33. J. Melcher, Z. Kala, M. Holický, M. Fajkus, and L. Rozlívka, “Design characteristics of structural steels based on statistical analysis of metallurgical products,” J. Constr. Steel Res., vol. 60, no. 3–5, pp. 795–808, Mar. 2004, doi: 10.1016/S0143-974X(03)00144-5.
  • 34. A. J. Sadowski, J. M. Rotter, T. Reinke, and T. Ummenhofer, “Statistical analysis of the material properties of selected structural carbon steels,” Struct. Saf., vol. 53, pp. 26–35, Mar. 2015, doi: 10.1016/j.strusafe.2014.12.002.
  • 35. ANSYS, “Online Manuals, Release 19.” 2019.
  • 36. M. Tekgoz, Y. Garbatov, and C. Guedes Soares, “Finite element modelling of the ultimate strength of stiffened plates with residual stresses,” in Analysis and Design of Marine Structures, CRC Press, 2013, pp. 309–317.
  • 37. M. Tekgoz and Y. Garbatov, “Ultimate strength of a plate accounting for shakedown effect and corrosion degradation,” in Developments in Maritime Transportation and Exploitation of Sea Resources, CRC Press, 2013, pp. 395–403.
  • 38. D. C. Montgomery, Design and Analysis of Experiments. John Wiley & Sons Ltd, USA, 2006.
  • 39. S. M. Dowdy, S. Wearden, and D. M. Chilko, Statistics for research. Wiley-Interscience, 2004.
  • 40. C. Daniel, “Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments,” Technometrics, vol. 1, no. 4, pp. 311–341, Nov. 1959, doi: 10.1080/00401706.1959.10489866.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4be82cf-6c5f-4522-a597-dc5b67b3191c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.