PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic study of phase equilibrium of superionic alloys of Ag3SBr1-xClx system in the concentration range 0.0–0.4 and temperature range 370–395 K

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermodynamic assessment of the phase stability of the solid solutions of superionic alloys of the Ag3SBr1-xClx (I) system in the concentration range 0 ≤ x ≤ 0.4 and temperature range 370–395 K was performed. Partial functions of silver in the alloys of solid solution were used as the thermodynamic parameters. The values of partial thermodynamic functions were obtained with the use of the electromotive force method. Potential-forming processes were performed in electrochemical cells. Linear dependence of the electromotive force of cells on temperature was used to calculate the partial thermodynamic functions of silver in the alloys. The serpentine-like shape of the thermodynamic functions in the concentration range 0–4 is an evidence of the metastable state of solid solution. The equilibrium phase state of the alloys is predicted to feature the formation of the intermediate phase Ag3SBr0.76Cl0.24, and the solubility gap of the solid solution ranges of Ag3SBr0.76Cl0.24 and Ag3SBr.
Rocznik
Strony
27--38
Opis fizyczny
Bibliogr. 24 poz., tab., wykr., wz.
Twórcy
autor
  • Department of Chemistry and Physics, National University of Water and Environmental Engineering, Soborna 11, 33028 Rivne, Ukraine
  • Department of Cartography and Geospatial Modeling, Lviv Polytechnic National University, St. Bandery 12, 79013 Lviv, Ukraine
  • Center for Microelectronics and Nanotechnology, University of Rzeszow, Pigonia 1, 35959 Rzeszow, Poland
  • Department of Physical and Colloid Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79005 Lviv, Ukraine
Bibliografia
  • [1] Hoshino S., Fujishita H., Takashige M., Sakuma T.: Phase transition of Ag3SX (X = I, Br). Solid State Ionics 3-4(1981), 35–39, DOI:10.1016/0167-2738(81)90050-3.
  • [2] Kettai M.El., Malugani J.P., Mercier R., Tachez M.: Phase transitions and conductivity in superionic Ag3SI1−xBrx solid solutions. Solid State Ionics 20(1986), 87–92, DOI:10.1016/0167-2738(86)90014-7.
  • [3] Beeken R.B., Haase A.T., Hoerman B.H., Klawikowski S.J.: The effect of non-stoichometry in Ag3SBr. Solid State Ionics 113-115(1998), 509–513, DOI:10.1016/S0167-2738(98)00384-1.
  • [4] Beeken R.B., Menningen K.L.: Fast ion conduction in ß-Ag3SI1−xBrx solid solutions. J. Appl. Phys. 66(1989), 11, 5340–5343, http://dx.doi.org/10.1063/1.343726.
  • [5] Xianglian, Honda H., Basar K., Siagian S., Sakuma T., Takahashi H., Kawaji H., Atake T.: Low-Temperature Phase in Superionic Conductor Ag3SBrxI1−x. J. Phys. Soc. Jpn. 76(2007), 114603, 1–4, http://dx.doi.org/10.1143/JPSJ.76.114603.
  • [6] Beeken R.B., Wright T.J., Sakuma T.: Effect of chloride substitution in the fast ion conductor Ag3SBr. J. Appl. Phys. 85(1999), 11, 7635–7638, http://dx.doi.org/10.1063/1.370565.
  • [7] Babanly M.B., Mashadieva L.F., Velieva G.M., Imamalieva S.Z., Shykhyev Yu.M.: Thermodynamic study of the Ag-As-Se and Ag-S-I systems using the EMF method with a solid Ag4RbI5 electrolyte. Russ. J. Electrochem. 45(2009), 4, 399–404, DOI:10.1134/S1023193509040077.
  • [8] Moroz M.V., Prokhorenko M.V., Prokhorenko S.V.: Determination of thermodynamic properties of Ag3SBr superionic phase using EMF technique. Russ. J. Electrochem. 51(2015), 886–889, DOI:10.1134/S1023193515090098.
  • [9] Babanly M., Yusibov Y., Babanly N.: The EMF Method with Solid-State Electrolyte in the Thermodynamic Investigation of Ternary Copper and Silver Chalcogenides. In: Electromotive Force and Measurement in Several Systems, (S. Kara, Ed.), InTech, 2011.
  • [10] Aliyeva Z.M., Bagheri S.M., Aliev Z.S., Alverdiyev I.J., Yusibov Y.A., Babanly M.B.: The phase equilibria in the Ag2S–Ag8GeS6–Ag8SnS6 system. J. Alloys Compd. 611(2014), 395–400, doi:10.1016/j.jallcom.2014.05.112.
  • [11] Fairman R., Ushkov B. (Eds.): Semiconducting Chalcogenide Glass I: Glass Formation, Structure, and Simulated Transformations in Chalcogenide Glasses, Vol. 78, Elsevier – Academic Press, 2004.
  • [12] Preston-Thomas H.: The international temperature scale of 1990 (ITS-90). Metrologia. 27(1990), 1, 3–10.
  • [13] SRM 640b: Silicon Powder 2 /d-Spacing Standard for X-ray Diffraction. National Institute of Standards and Technology, Gaithersburg, MD, 1987.
  • [14] Standard Reference Materials, SRM 676: Alumina Internal Standard for Quantitative Analysis by X-ray Powder Diffraction. National Institute of Standards and Technology, Gaithersburg, MD, 2005.
  • [15] Diffractometer Stoe WinXPOW, version 2.21, Stoe & Cie GmbH, Darmstadt 2007.
  • [16] Kraus W., Nolze G.: PowderCell for Windows, version 2.3. Federal Institute for Materials Research and Testing, Berlin 1999.
  • [17] Moroz M.V., Demchenko P.Yu., Prokhorenko S.V., Moroz V.M.: Physical properties of glasses in the Ag2GeS3-AgBr system. Phys. Solid State. 55(2013), 8, 1613–1618, DOI: 10.1134/S1063783413080209.
  • [18] Robinel E., Kone A., Duclot M.J., Souquet J.L.: Silver sulfide based glasses:(II). Electrochemical properties of GeS2-Ag2S-Agl glasses: Transference number measurement and redox stability range. J. Non-Cryst. Solids 57(1983), 1, 59–70, DOI: 10.1016/0022-3093(83)90408-8.
  • [19] West A.R.: Solid State Chemistry and its Application, 2nd Edn. Wiley, 2014.
  • [20] Moroz M.V., Demchenko P.Yu., Mykolaychuk O.G., Akselrud L.G., Gladyshevskii R.E.: Synthesis and electrical conductivity of crystalline and glassy alloys in the Ag3GeS3Br–GeS2 system. Inorg. Mater. 49(2013), 9, 867–871, DOI:10.1134/S0020168513090100.
  • [21] Feng D., Taskinen P., Tasfaye F.: Thermodynamic stability of Ag2Se from 350 to 500 K by a solid state galvanic cell. Solid State Ionics. 231(2013), 1–4, DOI:10.1016/j.ssi.2012.10.013.
  • [22] Osadchii E.G., Echmaeva E.A.: The system Ag–Au–Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique. Am. Mineral. 92(2007), 4, 640–647, DOI:10.2138/am.2007.2209
  • [23] Moroz M.V., Prokhorenko M.V.: Thermodynamic properties of the intermediante phases of the Ag–Sb–Se system. Russ. J. Phys. Chem. A. 88(2014), 5, 742–746, DOI:10.1134/S0036024414050203.
  • [24] Morachevskiy A.G., Voronin G.F., Geyderikh V.A., Kutsenyuk I.B.: Electrochemical Methods of Investigation in Thermodynamics of Metallic Systems. Akademkniga, Moscow 2003 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4bdc851-611a-4ba0-a75f-e581da8f0dbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.