
Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 179

1. Introduction

Symmetric block ciphers, since proliferation of the
DES algorithm in the 70. of the previous century, are
the standard method of data protection that ensures
safe and secure operation of contemporary IT
systems. Today, after DES expiration due to
insufficient cryptographic strength when compared
to available processing power, its descendant – the
AES algorithm – is the typical solution applied in
this area. In this paper we discuss hardware
implementations of the two best ciphers in the AES
contest – the winner Rijndael and the Serpent – in
low-cost, popular field-programmable gate arrays
(FPGA). The text is organised as follows. The rest of
this introductory chapter presents motivation of our
specific implementation approach as well as the
origin of the two algorithms which we have selected
as the representatives of symmetric block ciphers
applied in practice. Internal organisation of the two
methods is briefly reminded in chapter 2 and then, in
chapter 3, specific problems of their implementations
in FPGA devices are described. Finally, chapter 4
discusses hardware verification of the proposed
solutions.

1.1. Motivation of this work

The AES standard is more than 10 years old now
and, obviously, there is a vast knowledge of possible
soft- and hardware implementations of the block
ciphers proposed at the time of its development.
Because realisation of the cipher transformations
directly in hardware was one of the important options
taken into account from the very beginning in the
contest, there are numerous solutions described in the
literature that implement the ciphers in both mask-
(ASIC) and field-programmable gate arrays (FPGA).
The essential initial evaluation was included in [5]
while other examples can be found, for example, in
[6]-[9], [12] and [14]-[17]. Most of the typical
solutions are highly customized for specific device
architectures and / or operating environments. Being
created first of all for topmost performance, their
excellent operational parameters were possible
thanks to elaborate optimizations which often
involved manual fine-tuning of mapping, layout or
routing phases during FPGA implementation. Also
hardware platforms for these projects demanded the
fastest, largest and often most expensive chip
families in the FPGA world.
In this work we deliberately look from different point
of view at the hardware implementation of the cipher
unit. While the “top-notch specialization” approach

Sugier Jarosław
Wrocław University of Technology, Wrocław, Poland

Implementation of symmetric block ciphers in popular-grade FPGA
devices

Keywords

cryptographic processor, AES, Serpent cipher, hardware implementation, pipelining, iterative architecture.

Abstract

In this paper we discuss hardware implementations of the two best ciphers in the AES contest – the winner
Rijndael and the Serpent – in low-cost, popular Field-Programmable Gate Arrays (FPGA). After presenting the
elementary operations of the ciphers and organization of their processing flows we concentrate on specific
issues of their implementations in two selected families of popular-grade FPGA devices from Xilinx: currently
the most common Spartan-6 and its direct predecessor Spartan-3. The discussion concentrates on differences in
resources offered by these two families and on efficient implementation of the elementary transformations of
the two ciphers. For case studies we propose a selection of different architectures (combinational, pipelined and
iterative) for the encoding units and, after their implementation, we compare size requirements and
performance parameters of the two ciphers across different architectures and on different FPGA platforms.

Sugier Jarosław
Symmetric block ciphers implemented in popular-grade FPGA devices

 180

was natural in the early years of AES conception,
today the situation has changed thanks to ever-
growing capacity of programmable devices and
another course of action becomes more and more
common. First of all, the cipher module often
becomes just one of the elements in the system-on-
the chip implemented in a popular, often low-cost,
hardware device. In designs of this kind it is not
desirable, or even not possible, to make the cipher
optimization the dominant aspect of the whole
project. The module must share both resources and
optimization effort appropriately with the rest of the
system. Secondly, encoding / decoding throughput
parameters do not need to reach multi-Gbps values in
common equipment designed for personal use;
numbers in the range of single Gbps are sufficient for
popular transmission channels like High-Speed USB
or consumer-grade mass-storage devices. In this
situation not the performance of the unit (generally
understood almost always as maximum data
throughput) but its flexibility and fast, fully
automatic implementation become highly valued
features that facilitates installation of the cipher
module in the whole design and, consequently,
reduces time-to-market in device development.
Hence the aim of this work is to investigate low-cost
FPGA implementations of the two best ciphers that
emerged as a result of the AES contest. Based on the
original results that are presented here one can
compare the potential of the two methods and
evaluate expenses at which their superior efficiency
can be achieved. In particular, the terms “popular-
grade” or “low-cost” that we refer to in the title and
in the text are understood as follows: 1) the
programmable device used for implementation is
chosen from inexpensive, popular and commonly
used line of FPGA chips, widely available on the
market; 2) the design is described in hardware
description language on the relatively high level of
abstraction (no less than at Register Transfer Level,
RTL) and then synthesized and implemented fully
automatically by standard software provided by the
chip manufacturer, without any special “handmade”
optimization, neither in layout nor routing.

1.2. Origin of Rijndael (AES) and serpent

The Data Encryption Standard (DES), developed by
IBM and standardized by US National Institute of
Standards and Technology (NIST) in 1977, had been
internationally used as the best encryption method
until the mid-1990s when its strength was seriously
questioned by successful attacks. Due to relatively
short length of the DES key (56 bits) it became
possible to complete brute-force exhaustive search of
the entire key space in more and more acceptable
times using specialized hardware platforms and / or

distributed computing. Facing an imminent demise
of DES, in January 1997 NIST issued a first call for
a successor algorithm, to be called an Advanced
Encryption Standard, or AES.
The request called for unclassified, publicly
disclosed encryption algorithm, available royalty-
free, worldwide. In response total of 15 new ciphers
were submitted from several countries. After two
conferences organized by NIST to promote public
examination of the proposals (AES1, August 1998
and AES2, March 1999) the five finalists were
announced in August 1999. Their AES2 votes were
as follows:
- Rijndael: 86 positive, 10 negative
- Serpent: 59 positive, 7 negative
- Twofish: 31 positive, 21 negative
- RC6: 23 positive, 37 negative
- MARS: 13 positive, 83 negative
During the last AES3 conference in April 2000 the
authors had the last chance to present their proposals
and then in October 2000 NIST announced the final
decision which was consistent with the AES2 voting:
the winner was Rijndael cipher. Under the new name
of AES it was announced the U.S. Federal
Information Processing Standard 197 (FIPS 197) in
November 2001 ([10]).

2. The algorithms

Both algorithms – the AES and the Serpent – are
symmetric block ciphers that are examples of
substitution-permutation networks (SPN). Their
processing consists in a sequence of rounds, with
every round being a specific set of elementary
operations executed repeatedly over a given block of
data. Independently from cipher (data) path there is
a separate processing whose task is to provide every
round with its individual round key, generated from
user-supplied secret external key.
In the following presentation of the two ciphers we
will use unified symbols which in some cases will be
different from official nomenclature used in
specifications submitted by the authors.

2.1. The AES (Rijnadael)

The AES cipher was initially developed by two
Belgian cryptographers, Joan Daemen and Vincent
Rijmen, and submitted to the AES contest under the
name “Rijndael”. The approved final standard is
publicly available as a FIPS publication in [10] and,
strictly speaking, is a subset of Rijndael with fixed
block size of 128b(it) and allowed key sizes of 128,
192 or 256b (the original method accepts block and
key sizes equal to any multiply of 32b from 128 to
256). In discussion of this paper we consider

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 181

exclusively the AES-128 version, i.e. we assume size
of the key to be 128b.
In AES the 128b data block is considered to be
a 4×4B(yte) array, termed the State. For 128b key,
the whole encryption procedure is divided into
exactly 10 rounds after one auxiliary round executed
at the beginning of the process. During encryption
every round consists of four elementary state
transformations executed in specific order: byte
substitution (SBox), row shifting (SR), column mixing
(MC) and addition of a round key (bitwise XOR
operation, denoted with the ‘⊕’ symbol). The two
exceptions are the initial round (numbered as 0) that
consists only of addition of the external user key and
the last one (number 10) that does not perform
column mixing.
Let P be a 128b plaintext (input), Bi – a state block
that enters the i-th round Ri, K – external user key, Ki
– the key generated for round i, and C – encoded
ciphertext (output). The complete data path of the
AES can be expressed with the following equations:

 B1 := P ⊕ K

 Bi+1 := MC(SR(SBox(Bi))) ⊕ Ki, i = 1 … 9 (1)

 C := SR(SBox (B10)) ⊕ K10

As it was mentioned before, rounds 1-10 use
extended keys that needs to be generated from the
main key by a separate so called key expansion
routine. These computations, in turn, operate on 32b
words wi, i = 0..43, which, upon elaboration, are
directly copied to the round keys Ki. Initially, the
first four words are filled with bits from the user key:

 { w0, w1, w2, w3} := K (2)

and then, for i = 1..10, every group of four words that
creates round key Ki is computed as follows:

 w4i := SBox(w4i-1 <<< 8) ⊕ Rcon[i] ⊕ w4i-4

 w4i+1 := w4i ⊕ w4i-3

 w4i+2 := w4i+1 ⊕ w4i-2 (3)

 w4i+3 := w4i+2 ⊕ w4i-1

 Ki := {w4i, w4i+1, w4i+2, w4i+3 }

where <<< denotes left rotation (always by 8 bits, in
this case), the SBox transformation uses exactly the
same substitution boxes as the cipher path, and the

Rcon is a vector of ten 32b constants statically
defined in the standard.

2.2. The serpent

Serpent ([1]-[3]) was developed by Ross Anderson
(University of Cambridge Computer Laboratory), Eli
Biham (Technion Israeli Institute of Technology),
and Lars Knudsen (University of Bergen, Norway).
In the version that was submitted for AES contest the
method operates on 128b data blocks and requires
256 bit external key. The transformation flow is
divided into 32 rounds (numbered 0-31) repeated
over the data block with each round consisting of
(nearly identical) sequence of elementary operations.
As in the AES, each of the first 31 rounds requires
separate 128-bit round key while the last round needs
two keys; therefore, total of 33 round keys must be
generated by a processing path called in this case key
schedule.
Before the plaintext block enters the procedure
a special bit reordering – so called initial
permutation IP – is performed. The plaintext P after
permutation gives block B0, which is the input to the
first round. At the end of the round chain, the output
of the last round, B32, undergoes the final
permutation FP (which is an inverse of IP) giving
the ciphertext C.
As the first transformation in each round the block Bi
is XOR-ed with the round key Ki and then the
resulting vector is passed through substitution boxes.
The algorithm defines 8 different S-Boxes numbered
0 … 7 with each round Ri using S-Box number i mod
8. Subsequently, the vector created by S-Boxes
undergoes linear transformation LT giving block Bi+1
that is the input to the next round. In the last round
R31 the linear transformation is replaced with XOR
operation with K32 and therefore two keys are
required in this round. The complete data path can be
formally described as:

 B0 := IP(P)

 Bi+1 := LT(SBoxi mod 8(Bi ⊕ Ki)), i = 0 … 30 (4)

 B32 := SBox7(B31 ⊕ K31) ⊕ K32

 C := FP(B32)

Operation of the key schedule is no less involved.
First, a set of 32-bit prekeys wi is created: the
external key K is copied to the first ones numbered
from –1 to –8

 {w–1, w–2, … w–8} := K (5)

Sugier Jarosław
Symmetric block ciphers implemented in popular-grade FPGA devices

 182

and then another 132 prekeys w0…w131 are generated
by the following affine recurrence:

 wi := (wi–1 ⊕ wi–3 ⊕ wi–5 ⊕ (6)

 wi–8 ⊕ φ ⊕ i) <<< 11

where φ symbol stands for the fractional part of the
golden ratio value () 215 + (32-bit vector
0x9E3779B9 in hexadecimal notation). Having the
prekeys, the round keys are calculated using the
same set of 8 substitution boxes that are used in the
cipher path. The rule is that key Ki is computed from
a group of four prekeys w4i, w4i+1, w4i+2 and w4i+3
using S-boxes number (3 – i) mod 8:

 K0 := IP(SBox3(w0, w1, w2, w3))

 K1 := IP(SBox2(w4, w5, w6, w7))

 K2 := IP(SBox1(w8, w9, w10, w11)) (7)
 …
 K32 := IP(SBox3(w128, w129, w130, w131))

3. Specifics of FPGA implementation

For both algorithms, relative simplicity of
elementary operations as well as regular sequential
structure of round series lead to effective
implementation in both software and hardware, but
some specific aspects of FPGA architecture do
differentiate particular results. In brief discussion
that follows we will see these problems in the
context of popular-grade device families from Xilinx
that were chosen for case studies of this work:
Spartan-3 ([18]) and Spartan-6 ([19]). We will
concentrate on the three aspects: programmable
resources available in the selected devices (section
3.1), their use for realisation of the cipher
transformations (section 3.2) and overall
organization of cipher processing – i.e., the
architecture of the unit (section 3.3).

3.1. Programmable resources

For simplified structure of the logic cell in the two
Xilinx families please see Figure 1. In all FPGA
devices from this producer, so called Look-Up Table
(LUT) is the element located in every logic cell
which is provided for generation of any
combinational function. A single LUT is a ROM
table filled with zeroes and ones during configuration
according to the function which should be computed
at its output. In case of Spartan-3 devices, the LUTs
are 4-input tables holding 16b each thus they can
generate any function of maximum 4 variables.

A function of fever variables still must occupy one
LUT while any wider function will use more of them
(5-input function = 32b or 2 LUTs, 6-input function
= 64b or 4 LUTs, etc.). In Spartan-6 architecture, in
turn, every LUT table has the total capacity of 64b
being sufficient for generation of a 6-input Boolean
function but, alternatively, can be configured for
generation of two different 5-input functions of the
same variables. These configuration nuances will
have significant impact on implementation of the
cipher transformations.

LUT5

LUT5

A[5:1]

A[6]
LUT6

LUT4 A[4:1]

Spartan-3:

Spartan-6:

Figure 1. Simplified structure of the logic cell in
Spartan-3 and Spartan-6 architectures

The signal which goes out of the LUT can be
optionally stored in the flip-flop so virtually every
signal generated in the array can be easily
synchronously registered: introducing some amount
of flip-flops into the FPGA project, like it is in
pipelined designs, usually can be accomplished at
very little additional cost.

3.2. Implementing elementary operations

Looking at equations (1) and (4) it can be seen that
both algorithms – AES and Serpent – share very
similar set of elementary transformations: (A) key
addition, (B) a linear transformation (which is called
“column mixing” in the AES terminology), and
(C) bit substitution serving as a non-linear
transformation. Generation of the round keys defined
in equations (3) and (6)-(7) does not add any new
kind of operations to this list.
From our discussion we will deliberately exclude any
bitwise shift transformations, i.e. the elementary
operation SR of the AES in equation (1) and vector
rotations found in (3) and (6). Although in software
implementation these would require due amount of
processor cycles for byte transfers, in hardware,
since no data is modified, they are just static bit
permutations that are accomplished completely in
routing and do not absorb any logic resources.

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 183

(A) Key addition. The first operation on the list is the
simplest one conceptually: 128 bits of the data block
are bitwise XOR-ed with suitable round key. From
hardware point of view, this creates a set of 128 2-
input functions which, without optimization, would
require 128 LUT elements in Saprtan-3 or, thanks to
possible generation of two functions in a single LUT,
64 elements in Spartan-6. In any case, since the
functions are of only two variables, these would not
be used to their full potential and only the
optimization procedures of the implementation tool
can improve this by fitting in the LUT the XOR
function merged with some another transformation
adjacent in the processing chain. Such merging was
not explicitly defined in the VHDL code in the
projects discussed later in this work, though.

(B) Linear transformation. Compared to the previous
operation, this transformation is much more complex
for realisation. Leaving behind its cryptographic
merit, at the binary level it can be expressed as
a matrix multiplication where each output byte is
computed through series of sum mod 2 and shift
operations that, down to the strictly hardware point
of view, make up a combinational circuit. In
hardware, every output bit of the MC / LT module is
computed as some particular function that reads 3 to
7 bits from the input and passes them through a net
of XOR gates. The resulting gate network in
hardware is highly irregular and its implementation
with LUTs, as well as its later optimization, is
a major challenge for implementation tool. Along
with the aim of this work, this task was left for fully
automatic operation of the implementation software
and no handmade optimization was applied in the
VHDL code.

(C) Non-linear transformation. Operation of this
kind is present in both ciphers and, putting aside its
mathematical background again, in both cases it
takes the form of statically defined transcoding table:
8b→8b in AES and 4b→4b in Serpent. The
substitution operates independently on 8 / 4b parts of
the data block and if this is to be executed in parallel
on the whole vector (a principal option to choose
when striving for high throughput) then 16 (AES) /
32 (Serpent) transcoding modules of appropriate type
need to be placed one by one. In hardware, such
transcoding is an 8- / 4-input combinational function
that can be implemented either as a network of logic
gates or as a 256×8 / 16×4 ROM lookup table. The
latter method usually leads to more effective
implementation, especially in FPGA arrays, where 8-
input Boolean functions are considered wide and
resources for their implementation are limited.
A ROM block in FPGA architecture, in turn, can be
implemented either as a distributed memory module

composed of elementary LUTs or its contents can be
stored in one of Block RAM modules (BRAM)
available on-chip next to the FPGA array as an
additional resource.
In case of the AES, in Spartan-3 device a distributed
ROM storing one 8b-wide SBox would take 256 × 8 /
16 = 128 LUT elements + additional logic for
address decoding, or 256 × 8 / 64 = 16 LUTs in
Spartan-6 array. Multiplying these numbers by 16
(all data block transcoded in parallel) we reach total
of 2048 (Spartan-3) or 256 (Spartan-6) LUTs for
representation of SBox operation in a single round.
For Spartan-3 devices this can be a significant
amount especially when such module is replicated
for each round (×10) as it is in some architectures.
On the other hand, BRAMs are 16kb in size in both
families and can be configured as 2k × 8. This
amount of memory is more than enough for two
independent S-boxes that can operate in one block
using its dual-port feature (even then only 25% of
total capacity is used). Hence minimum of 8 BRAMs
per round is needed for AES SBox operation if all
State bytes are to be transcoded in parallel.
In Serpent the substitution is defined for data chunks
two times smaller and parallel processing of the
whole data block needs 128b / 4b = 32 modules. The
observations made above for AES regarding different
implementation options are still valid but the
numbers are different: every Serpent SBox
implemented as a 16×4 distributed ROM would need
just 4 LUTs in Spartan-3 or 2 LUTs in Spartan-6,
giving total of 128 or 64 LUTs per round. The
difference as compared to the AES is especially
outstanding for the Spartan-3 family: implementing
the AES on this platform with Sboxes stored in
distributed memory is very costly and if all rounds
are to be repeated in hardware, as they are, for
example, in pipelined architectures of the whole
cipher unit, then only the biggest devices are large
enough to accommodate the required number of
elements for this transformation alone. On the
Spartan-6 platform this disparity is much smaller and
the lower number of AES rounds (10 vs. 32) can
compensate for it completely.
Using the block RAM for Serpent SBoxes is not
a good option: in its case substitution needs 32 boxes
per round so 16 block RAMs would be needed but
with utilization of only 1/512 of their capacity.
Moreover, all 32 rounds repeated in hardware would
take 16 × 32 = 512 blocks – an unreasonably high
occupancy compared to its effective results.
In case of the AES, apart from resource utilization
the important difference between distributed vs.
block RAM lies in operation mode: reading the
distributed ROM in LUTs is purely asynchronous
(memory contents is present at the data outputs only

Sugier Jarosław
Symmetric block ciphers implemented in popular-grade FPGA devices

 184

after small combinatorial delay after the new read
address has been established) while read operation of
the BRAM must be synchronous (to read the
memory contents after address is set one clock edge
is required). Therefore when strictly combinatorial
(asynchronous) operation of SBox transformation is
required the LUT-based distributed memory has no
alternatives in Xilinx devices.

3.3. Architectures of the cipher units

Both AES and Serpent implementations can be based
on various hardware processing schemes thanks to
regular structure of their data processing where
a series of (nearly) identical rounds repeatedly
transforms the same block of data. In a set of case
studies investigated in this work all standard kinds of
processing – combinational, pipelined and iterative –
were applied in the VHDL language and then
implemented in two specific FPGA devices. Their
exhaustive discussion was not possible in this paper
due to its size limit and can be found in papers [14]
and [16]. In total, four kinds of typical architectures
were devised and they were applied for the two
ciphers as closely as possible.

(A) Combinational architecture. In this organization
structure of the hardware simply reflects flow of the
data that is being encoded. All rounds of the cipher
(11 for AES and 32 for Serpent) are implemented as
separate hardware modules that create a continuous
combinational path from the input to the output
registers. In-between, the unit operates as
a combinational function that maps 256 input bits
(data + key) into 128 output bits (ciphertext). The
two designs were specified by expressing as closely
as possible the original cipher specification in the
VHDL language using strict RTL style. Substitution
boxes, both 8b (AES) and 4b (Serpent), were defined
according to general Xilinx templates recommended
for ROM specification. The cascade of the modules
that implement individual cipher rounds was easily
constructed with a single for...generate
statement which greatly improved conciseness and
clarity of description.

(B) Cipher-only (half) pipelined architecture.
The general idea of pipelining is to introduce evenly
spaced registers along the combinational path so that
in its synchronized operation multiple blocks of data
are processed simultaneously during every clock
cycle. Taking the combinational architectures of both
ciphers as the starting designs for pipelining, the
natural points of placing the pipeline registers are the
signals Bi that cross boundaries of cipher rounds; this
transforms each round into one pipeline stage (so
called complete outer loop unrolling) and yields 11
pipeline stages for AES and 32 for Serpent. In this

architecture the key generation path remains
combinational and this fact slows down changes of
the external key during operation of the unit: loading
a new key input invalidates the pipeline contents for
11 or 32 clock ticks until new data fill all the cipher
stages. This drawback may exclude this architecture
from environments with frequent key changes but if
it can be assumed that the key remains constant most
of the time this is the optimal organization in terms
of both speed and size.

(C) Fully pipelined architecture. In this organization
the key generation path was pipelined in an
equivalent way as the cipher one so that the key
generator provides the cipher stage with relevant key
together with data (i.e. the key must be computed
one clock cycle before the data). There was no
problem with such organisation in the AES unit:
since in the first pipeline stage R0 uses external (user)
key, its special preparation is not required. Instead,
during the first clock cycle when block B1 is
computed, the K1 key is prepared simultaneously so
that it is ready for the round R1 in the next cycle. The
total number of pipeline stages did not change.
In Serpent, three issues complicated an equivalent
solution. Firstly, computation of Ki depends on
prekeys wi from two previous stages so additional
registers are required for storing previous values of
wi and feeding them two stages down the pipeline
must be implemented in the routing. Secondly, the
last cipher round needs two keys, so it must be split
into two stages: the first one contains key mixing
with bit substitution and the second one performs
final key mixing only. Such splitting increased the
total latency of the unit to 33 clock cycles but,
compared to the only alternative solution with 32
stages but with computation of K31 and K32 in one
clock cycle, the shorter clock period compensates
this increase more than adequately. Finally, the first
Serpent round does not use unmodified external key;
instead, K0 must be computed in a regular way as any
other key and during that the data in cipher path must
wait going through a dummy (empty) stage
introduced right at the beginning of the pipeline. This
adds extra 128 flip-flops (negligible compared to the
total resource consumption) but also, which is more
undesirable, extends the pipeline length to 34. For
more detailed discussion about inconveniencies of
pipelining in the Serpent algorithm together with
evaluation of possible intermediate solutions please
refer to [14].

(D) Iterative architecture. The iterative architectures
investigated for both ciphers were based on one
round taken from the fully pipelined organizations.
Such a round was supplemented with necessary
multiplexing logic (loading the data in – looping

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 185

back – loading the data out) and a simple controller
responsible for counting the repetitions of the loop
(round number) and supervising the multiplexers.
The controller, in its minimal form, comprised
a single “idle/busy” register and a round counter. In
both architectures number of clock cycles required
for encoding one block of data was identical to the
number of pipeline stages in fully pipelined
implementations. Again, some additional
complications arose in Serpent module. While in the
AES just one SBox transformation is used in all
rounds, the Serpent defines 8 different SBoxes. This
meant that some single “universal” SBox had to be
created with the contents of all 8 SBox’es and an
extra 3b input for selection signal, making its
implementation with FPGA resources notably more
complicated. For this reason one-round iterative
architecture usually is not recommended for Serpent;
instead, typically 8 rounds are implemented in
hardware with the data block looped back 4 times
(iteration scheme 8 × 4 instead of 32 × 1).
Nevertheless, such organization was not chosen in
this study for consistency of the results.

4. Implementations

All the 4 above architectures were implemented in
Spartan-6 and, for comparison, in the previous
family of Spartan-3 devices from Xilinx. From
Spartan-6 family a middle-sized chip XC6SLX75
was selected as a representative test platform and it
served this role very well. The initial plan was to use
Spartan-3E sub family as a comparable alternative,

but because it soon turned out that even the largest
chip – XC3S1600E – was too small for
combinational and pipelined AES designs, it was
decided to revert to, nowadays somewhat obsolete,
initial Spartan-3 family, and to select the XC3S2000
device.
Initially there were 8 designs (4 for each cipher) and
their code was implemented in Xilinx ISE Design
Suite version 13.4, twice for the two different target
devices. It turned out that the software can optionally
implement the two pipelined architectures of the
AES with or without utilization of block RAM
resources, so this led to the final total of 10 different
cases. For other architectures, enabling the use of
block RAM did not change the implementation
results since the software did not decide to use it
even though the VHDL code did include templates of
ROM definitions (for SBox specification) and they
were properly detected in reports of the synthesis
tool.
Parameters of the 10 implementations related to their
size and performance are included in Table 1 and
they confirm particular strengths of specific
organizations: the combinational architectures leads
to the shortest possible latency, pipelining is the best
way to maximize raw throughput, and the iterative
units are optimal if smallest possible resource
utilization, at the cost of low performance, is needed.
Evaluating utilization of block RAM for the two
pipelined architectures of the AES, in Spartan-6 it
resulted in remarkable savings in other resources
(slices, registers and LUTs) which utilization

Table 1. The proposed architectures implemented in Spartan-6 (upper values) and Spartan-3 (lower values)

 A E S S e r p e n t

Spartan-6
Spartan-3

A
va

ila
b

le

C
o

m
b

in
at

io
n

al

H
al

f-
p

ip
el

in
ed

H
al

f
p

ip
el

in
ed

w

ith
 B

R
A

M

F
u

lly
 p

ip
el

in
ed

F
u

lly
 p

ip
el

in
ed

w

ith
 B

R
A

M

It
er

at
iv

e

C
o

m
b

in
at

io
n

al

H
al

f
p

ip
el

in
ed

F
u

lly
 p

ip
el

in
ed

It
er

at
iv

e

93296 256 1536 256 2944 1664 817 256 4224 16768 806
Registers

40960 271 5061 2771 3913 3913 781 256 4224 16768 783
46648 8997 9087 3946 8884 3376 1367 16888 15523 22029 1566

LUTs
40960 34566 30426 25328 29976 24583 7986 18939 22708 26876 3995

RAMB8s 344 80 86
RAMB16 40 20 20

 24.4 195 154 215 168 160 7.95 196 169 180
Fmax[MHz]

 11.8 83.5 77.0 106 101 77.0 6.35 143 125 96.2
 1 11 11 11 11 11 1 32 34 34

Latency [TCLK]
 1 11 11 11 11 11 1 32 34 34
 41.0 56.4 71.2 51.2 65.6 68.9 126 163 202 189

Latency [ns]
 84.8 132 143 104 109 143 158 224 272 353
 3.05 24.4 19.3 26.8 20.9 1.81 0.99 24.5 21.1 0.66

Throughput [Gbps]
 1.47 10.4 9.62 13.2 12.6 0.88 0.79 17.9 15.6 0.35

Sugier Jarosław
Symmetric block ciphers implemented in popular-grade FPGA devices

 186

dropped roughly by half, but the performance was
also affected although not so evidently (approx. 20%
drop in the throughput). On Spartan-3 platform, on
the other hand, the difference was not so apparent.
What can be also analysed is the difference in
effectiveness of cipher implementations with the two
tested device families. The general observation is
that, putting aside size parameters which are difficult
to compare between different architectures, it was the
performance of the AES which benefited more from
moving to the new family: on average the throughput
increased by 100% while for Serpent the increase
was around 20%. As it was discussed in section 3,
the new capabilities of LUT elements in Spartan-6
are beneficial for implementation of the AES
transformations, while in case of the Serpent they
offer very little improvement over Spartan-3.

5. Conclusions

It is often said that the AES is faster but the Serpent,
having more rounds, is more secure. This paper
demonstrates this rule in the context of
implementations which use popular-grade FPGA
devices. With the previous generation of Spartan
chips this principle was affected by the problems
with AES implementation: its wide, 8 bit substitution
boxes led to very high resource occupation and the
Serpent attained additional advantage. The situation
has changed with the new generation of Spartan
devices form Xilinx: extended capabilities of LUT
elements fit very well the needs of AES
transformations whereas they bring little progress for
the Serpent. The advantage of the latter cipher again
remains mainly in better cryptographic strength.

References

[1] Anderson, R., Biham, E. & Knudsen, L. (1998).
Serpent: A Proposal for the Advanced Encryption
Standard. Proc. First Advanced Encryption
Standard (AES) Candidate Conf. Ventura,
California, http://www.cl.cam.ac.uk/~rja14/
serpent.html (accessed April 2012).

[2] Anderson, R., Biham, E. & Knudsen, L. (2000).
Serpent and Smartcards. Smart Card Research
and Applications. Proc. 3rd International Conf.
CARDIS '98. Lecture Notes in Computer Science,
1820.

[3] Anderson, R., Biham, E. & Knudsen, L. (2000).
The Case for Serpent. Proc. Third AES Candidate
Conf. New York, http://csrc.nist.gov/archive/aes/
index.html (accessed April 2012).

[4] Chu, P.P. (2006). RTL Hardware Design Using
VHDL. John Wiley & Sons, New Jersey.

[5] Gaj, K. & Chodowiec, P. (2000). Comparison of
the hardware performance of the AES candidates

using reconfigurable hardware. Proc. Third AES
Candidate Conf. New York, http://csrc.nist.gov/
archive/aes/index.html (accessed April 2012).

[6] Krukowski, Ł. & Sugier, J. (2010). Designing
AES cryptographic unit for automatic
implementation in low-cost FPGA devices. Int. J.
Critical Computer Based Systems, 1, 104–116.

[7] Lázaro, J., Astarloa, A., Arias, J., Bidarte, U. &
Cuadrado, C. (2004). High Throughput Serpent
Encryption Implementation. Field Programmable
Logic and Application, Lecture Notes in
Computer Science, 3203.

[8] Liberatori, M., Otero, F., Bonadero, J.C. &
Castineira, J. (2007). AES-128 Cipher. High
Speed, Low Cost FPGA Implementation. Proc.
Third Southern Conf. on Programmable Logic.
Mar del Plata, Argentina, IEEE Comp. Soc. Press.

[9] Mroczkowski, P. (2000). Implementation of the
block cipher Rijndael using Altera FPGA.
Military University of Technology, Warsaw.

[10] National Institute of Standards and Technology
(2001). Specification for the ADVANCED
ENCRYPTION STANDARD (AES). Federal
Information Processing Standards Publication
197. http://csrc.nist.gov/publications/PubsFIPS
.html (accessed April 2012).

[11] Osvik, D.A. (2000). Speeding up Serpent. Proc.
Third AES Candidate Conf. New York,
http://csrc.nist.gov/archive/aes/index.html
(accessed April 2012).

[12] Piwko, K. (2010). Hardware implementation of
cryptographic algorithms in programmable logic
devices. Dissertation for M.Sc. degree, Wrocław
University of Technology, Faculty of Electronics.

[13] RSA Laboratories (1997-99). DES Challenges.
http:// www.rsa.com.

[14] Sugier, J. (2010). Low-cost hardware
implementation of Serpent cipher in
programmable devices. Monographs of System
Dependability Vol. 3: Technical Approach to
Dependability. Publishing House of Wrocław
University of Technology, 159-172.

[15] Sugier, J. (2011). Implementing Serpent cipher in
field programmable gate arrays. 5th International
Conf. on Information Technology ICIT 2011
Amman, Jordan, 91-96.

[16] Sugier, J. (2012). Implementing AES and Serpent
ciphers in new generation of low-cost FPGA
devices. Advances in Intelligent and Soft
computing Vol. 170: Complex Systems and
Dependability. Springer, 273-288.

[17] Wójcik, M. (2007). Effective implementation of
Serpent algorithm. Dissertation for M.Sc. degree,
Faculty of Electronics and Information
Technology, Warsaw University of Technology.

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 3, Number 2, 2012

 187

[18] Xilinx, Inc. (2009). Spartan-3 Family Data Sheet.
DS099.PDF, www.xilinx.com (accessed April
2012).

[19] Xilinx, Inc. (2011). Spartan-6 Family Overview.
DS160.PDF, www.xilinx.com (accessed April
2012).

Sugier Jarosław
Symmetric block ciphers implemented in popular-grade FPGA devices

 188

